Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathophysiology ; 11(2): 113-120, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15364123

ABSTRACT

Background: Lp(a) lipoprotein (Lp(a)) contains polymorphic glycoprotein, apolipoprotein(a) (apo(a)) and low density lipoprotein (LDL). The extensive homology between apo(a) and plasminogen is believed to contribute to the pathogenicity of apo(a), but the precise mechanisms by which Lp(a) participates in atherogenesis is still unknown. We used LPA-yeast artificial chromosome (LPA-YAC) transgenic mice with or without the human APOB (hAPOB) gene to study pathogenicity of apo(a)/Lp(a) and illucidate its role in regulation of serum lipid levels. Methods: Middle-aged (1-year-old) mice were fed a control (AIN-76), a high-cholesterol (HC) or a high-cholesterol/high-fat (HCHF) diet for 7 weeks. For the study of serum total apo(a) and lipid levels, mice were sampled prior to the experiment, at 2 weeks and at 7 weeks when the animals were sacrificed. Hearts with ascending aorta were fixed in formalin, embedded in gelatine and prepared for sections on a cryostat. Livers were washed in ice cold saline and submerged in RNAlater trade mark buffer and stored at -70 degrees C until mRNA analysis. Results: Wild type mice fed the control diet did not develop aortic lesions. Presence of the LPA gene was sufficient to induce development of aortic lesions, but neither coexpression of the hAPOB gene nor feeding the HC diet or the HCHF diet augmented the development of aortic lesions in LPA-YAC transgenic mice. On the control diet transgenic females had larger aortic lesion size than transgenic males. Furthermore, aortic lesions in transgenic females were associated with calcification more often than in transgenic males. Serum total cholesterol levels were higher both in wild type and LPA-YAC transgenic males than in females mainly because of higher serum high-density lipoprotein cholesterol levels. HC and HCHF feeding had more pronounced effect on total cholesterol levels in LPA-YAC/hAPOB transgenic mice than in either wild type or LPA-YAC transgenic mice, due to increased low density lipoprotein cholesterol levels. Furthermore, these diets reduced serum total apo(a) levels in both transgenic mouse lines. Conclusion: Expression of the human LPA gene in mice is sufficient to trigger development of aortic lesions. Similar frequency of calcified lesions in LPA-YAC transgenic mice with or without hAPOB gene may suggest that apo(a) is the part of the Lp(a) molecule that causes aortic calcification. The basis for reduced serum total apo(a) level in response to cholesterol feeding is not clear, but interplay between LPA and factors involved in cholesterol or bile acid homeostasis is worth of future studies.

2.
Lipids Health Dis ; 3: 8, 2004 May 11.
Article in English | MEDLINE | ID: mdl-15134578

ABSTRACT

BACKGROUND: The Lp(a) lipoprotein (Lp(a)) consists of the polymorphic glycoprotein apolipoprotein(a) (apo(a)), which is attached by a disulfide bond to apolipoprotein B (apoB). Apo(a), which has high homology with plasminogen, is present only in primates and hedgehogs. However, transgenic mice and rabbits with high serum apo(a) levels exist. Liver is the main site for apo(a) synthesis, but the site of removal is uncertain. To examine differences between transgenic mice expressing the LPA gene and mice capable of forming Lp(a) particles, LPA-YAC transgenic mice and hAPOB transgenic mice were crossed and their offspring examined. RESULTS: Comparison of LPA-YAC with LPA-YAC/hAPOB transgenic mice showed that LPA-YAC/hAPOB transgenic mice have higher serum total apo(a) and total cholesterol level than mice lacking the hAPOB gene. However, hepatic apo(a) mRNA level was higher in LPA-YAC transgenic mice than in LPA-YAC/hAPOB transgenic mice. Feeding of a high-cholesterol/high-fat diet to male LPA-YAC transgenic mice with or without the hAPOB gene resulted in reduced serum total apo(a) and hepatic apo(a) mRNA level. CONCLUSION: In conclusion, the higher serum total apo(a) level in LPA-YAC/hAPOB transgenic mice than in LPA-YAC transgenic mice is not caused by increased apo(a) synthesis. Lower hepatic apo(a) mRNA level in LPA-YAC/hAPOB than in LPA-YAC transgenic mice may suggest that the increase in total apo(a) level is a result of apo(a) accumulation in serum. Furthermore, observed higher serum total cholesterol level in LPA-YAC/hAPOB transgenic mice than either in wild type or LPA-YAC transgenic mice may further suggest that human APOB transgenicity is a factor that contributes to increased serum total apo(a) and cholesterol levels. Our results on reduced serum total apo(a) and hepatic apo(a) mRNA levels in HCHF fed male LPA-YAC transgenic mice confirm earlier findings in females, and show that there are no sex difference in mechanisms for lowering apo(a) level in response to HCHF feeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...