Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Type of study
Language
Publication year range
1.
Mem Inst Oswaldo Cruz ; 107(1): 11-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22310530

ABSTRACT

Within the country of Brazil, Santa Catarina is a major shellfish producer. Detection of viral contamination is an important step to ensure production quality and consumer safety during this process. In this study, we used a depuration system and ultraviolet (UV) disinfection to eliminate viral pathogens from artificially infected oysters and analysed the results. Specifically, the oysters were contaminated with hepatitis A virus (HAV) or human adenovirus type 5 (HAdV5). After viral infection, the oysters were placed into a depuration tank and harvested after 48, 72 and 96 h. After sampling, various oyster tissues were dissected and homogenised and the viruses were eluted with alkaline conditions and precipitated with polyethylene glycol. The oyster samples were evaluated by cell culture methods, as well as polymerase chain reaction (PCR) and quantitative-PCR. Moreover, at the end of the depuration period, the disinfected seawater was collected and analysed by PCR. The molecular assays showed that the HAdV5 genome was present in all of the depuration time samples, while the HAV genome was undetectable after 72 h of depuration. However, viral viability tests (integrated cell culture-PCR and immunofluorescence assay) indicated that both viruses were inactivated with 96 h of seawater recirculation. In conclusion, after 96 h of UV treatment, the depuration system studied in this work purified oysters that were artificially contaminated with HAdV5 and HAV.


Subject(s)
Adenoviruses, Human/radiation effects , Aquaculture/methods , Crassostrea/virology , Disinfection/methods , Food Microbiology , Hepatitis A virus/radiation effects , Ultraviolet Rays , Animals , Dose-Response Relationship, Radiation , Polymerase Chain Reaction , Seawater/virology , Time Factors
2.
Mem. Inst. Oswaldo Cruz ; 107(1): 11-17, Feb. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-612800

ABSTRACT

Within the country of Brazil, Santa Catarina is a major shellfish producer. Detection of viral contamination is an important step to ensure production quality and consumer safety during this process. In this study, we used a depuration system and ultraviolet (UV) disinfection to eliminate viral pathogens from artificially infected oysters and analysed the results. Specifically, the oysters were contaminated with hepatitis A virus (HAV) or human adenovirus type 5 (HAdV5). After viral infection, the oysters were placed into a depuration tank and harvested after 48, 72 and 96 h. After sampling, various oyster tissues were dissected and homogenised and the viruses were eluted with alkaline conditions and precipitated with polyethylene glycol. The oyster samples were evaluated by cell culture methods, as well as polymerase chain reaction (PCR) and quantitative-PCR. Moreover, at the end of the depuration period, the disinfected seawater was collected and analysed by PCR. The molecular assays showed that the HAdV5 genome was present in all of the depuration time samples, while the HAV genome was undetectable after 72 h of depuration. However, viral viability tests (integrated cell culture-PCR and immunofluorescence assay) indicated that both viruses were inactivated with 96 h of seawater recirculation. In conclusion, after 96 h of UV treatment, the depuration system studied in this work purified oysters that were artificially contaminated with HAdV5 and HAV.


Subject(s)
Animals , Adenoviruses, Human/radiation effects , Aquaculture/methods , Crassostrea/virology , Disinfection/methods , Food Microbiology , Hepatitis A virus/radiation effects , Ultraviolet Rays , Dose-Response Relationship, Radiation , Polymerase Chain Reaction , Seawater/virology , Time Factors
3.
Ecotoxicol Environ Saf ; 76(2): 153-61, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22036209

ABSTRACT

Florianópolis, a city located in the Santa Catarina State in southern Brazil, is the national leading producer of bivalve mollusks. The quality of bivalve mollusks is closely related to the sanitary conditions of surrounding waters where they are cultivated. Presently, cultivation areas receive large amounts of effluents derived mainly from treated and non-treated domestic, rural, and urban sewage. This contributes to the contamination of mollusks with trace metals, pesticides, other organic compounds, and human pathogens such as viruses, bacteria, and protozoan. The aim of this study was to perform a thorough diagnosis of the shellfish growing areas in Florianópolis, on the coast of Santa Catarina. The contamination levels of seawater, sediments, and oysters were evaluated for their microbiological, biochemical, and chemical parameters at five sea sites in Florianópolis, namely three regular oyster cultivation areas (Sites 1, 2, and oyster supplier), a polluted site (Site 3), and a heavily polluted site (Site 4). Samples were evaluated at day zero and after 14 days. Seawater and sediment samples were collected just once, at the end of the experiment. Antioxidant defenses, which may occur in contaminated environments in response to the increased production of reactive oxygen species (ROS) by organisms, were analyzed in oysters, as well as organic compounds (in oysters and sediment samples) and microbiological contamination (in oysters and seawater samples). The results showed the presence of the following contaminants: fecal coliforms in seawater samples (four sites), human adenovirus (all sites), human noroviruses GI and GII (two sites), Hepatitis A viruses (one site), JC Polyomavirus in an oyster sample from the oyster supplier, Giardia duodenalis cysts, and Cryptosporidium sp oocysts (one site). Among organochlorine pesticides, only DDT (dichlorodiphenyltrichloroethane) and HCH (hexachlorocyclohexane) were detected in some sediment and oysters samples in very low levels; site 4 had the highest concentrations of total aliphatic hydrocarbons, PAHs, and linear alkylbenzenes (LABs) found either in oysters or in sediment samples. The major concentration of fecal sterol coprostanol was found at site 4, followed by site 3. After 14 days of allocation in the four selected sites, there was a significant difference in the enzymes analyzed at the monitored spots. The detection of different contaminants in oysters, seawater, and sediment samples in the present study shows the impact untreated or inadequately treated effluents have on coastal areas. These results highlight the need for public investment in adequate wastewater treatment and adequate treatment of oysters, ensuring safe areas for shellfish production as well as healthier bivalve mollusks for consumption.


Subject(s)
Environmental Monitoring/methods , Mollusca/metabolism , Water Pollutants, Chemical/analysis , Water Pollution/statistics & numerical data , Animals , Brazil , Hazardous Substances/analysis , Hazardous Substances/metabolism , Humans , Invertebrates/metabolism , Metals/analysis , Metals/chemistry , Metals/metabolism , Norovirus/isolation & purification , Organic Chemicals/analysis , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Ostreidae/microbiology , Ostreidae/virology , Pesticides/analysis , Pesticides/chemistry , Pesticides/metabolism , Seawater/chemistry , Seawater/microbiology , Seawater/virology , Sewage/analysis , Water Microbiology , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Pollution/analysis
4.
Mar Environ Res ; 63(5): 479-89, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17280712

ABSTRACT

The State of Santa Catarina produces the greatest quantity of edible mollusks in Brazil. To guarantee sanitary qualify, mollusk cultures should be monitored for contamination by pathogenic microorganisms. A self-purification or "depuration" system that eliminates Salmonella enterica serovar Typhimurium contamination from oysters has been developed and evaluated. The depuration process occurred within a closed system, in which 1000 L of water was recirculated for 24 h. The water was sterilized with ultraviolet (UV) light, chlorine, or both together. Oysters (Crassostrea gigas) artificially contaminated with S. typhimurium were harvested every 6 h. Samples of oyster tissue were excised and both the presence and numbers of bacteria were determined. Combined UV light and chlorine treatments resulted in total elimination of bacteria within 12 h. Polymerase chain reaction detected bacteria in water exposed to the three treatments. This pioneering study is the first of its kind in Brazil and represents a major contribution to commercial mollusk culture in this country.


Subject(s)
Aquaculture/methods , Food Contamination/prevention & control , Ostreidae/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/radiation effects , Shellfish/microbiology , Analysis of Variance , Animals , Brazil , Chlorine/toxicity , DNA Primers , Electrophoresis , Polymerase Chain Reaction , Salmonella typhimurium/genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL