ABSTRACT
Phagocytosis, an essential process for host defense, requires the coordination of a variety of signaling reactions. MT-II, an enzymatically inactive Lys49 phospholipase A2 (PLA2) homolog, and MT-III, a catalytically-active Asp49 PLA2, are known to activate phagocytosis in macrophages. In this study, the signaling pathways mediating phagocytosis, focusing on protein kinases, were investigated. Macrophages from male Swiss mice peritoneum were obtained 96 h after intraperitoneal thioglycolate injection. Phagocytosis was evaluated using nonopsonized zymosan particles in the presence or absence of specific inhibitors, as well as PKC and PKC-α localization by confocal microscopy. Moreover, protein kinase C (PKC) activity was assessed by γP32 ATP in macrophages stimulated by both PLA2s. Data showed that both sPLA2s increased phagocytosis. Cytochalasin D, staurosporine/H7, wortmannin, and herbimycin, inhibitors of actin polymerization, PKC, phosphoinositide 3-kinase (PI3K), and protein tyrosine kinase (PTK), respectively, significantly reduced phagocytosis induced by both PLA2s. PKC activity was increased in macrophages stimulated by both PLA2s. Actin polymerization and talin were evidenced by immunofluorescence and talin was recruited 5 min after both PLA2s stimulation. PKC and PKC-α localization within the cell were increased after 60 min of MT-II and MT-III stimulation. These data suggest that the effect of both PLA2s depends on actin cytoskeleton rearrangements and the activation of PKC, PI3K, and PTK signaling events required for phagocytosis.
ABSTRACT
The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT–III–induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the β-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.
ABSTRACT
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
ABSTRACT
Coral snakes mainly cause neurotoxic symptoms in human envenomation, but experimental studies have already demonstrated several pharmacological activities in addition to these effects. This investigation was carried out with the aim of evaluating (1) non-neurogenic mechanisms involved in the inflammatory response induced by Micrurus lemniscatus venom (MLV) in rat hind paws, (2) participation of PLA2 in this response, and (3) neutralizing efficiency of commercial anti-elapid antivenom on edema. MLV promoted a rapid, significant increase in vascular permeability, influx of leukocytes, and disorganization of collagen bundles, as demonstrated by histological analysis. Several pretreatments were applied to establish the involvement of inflammatory mediators in MLV-induced edema (5 µg/paw). Treatment of animals with chlorpromazine reduced MLV-induced edema, indicating participation of TNF-α. However, the inefficiency of other pharmacological treatments suggests that eicosanoids, leukotrienes, and nitric oxide have no role in this type of edema formation. In contrast, PAF negatively modulates this venom-induced effect. MLV was recognized by anti-elapid serum, but this antivenom did not neutralize edema formation. Chemical modification of MLV with p-bromophenacyl bromide abrogated the phospholipase activity and markedly reduced edema, demonstrating PLA2 participation in MLV-induced edema. In conclusion, the non-neurogenic inflammatory profile of MLV is characterized by TNF-α-mediated edema, participation of PLA2 activity, and down-regulation by PAF. MLV induces an influx of leukocytes and destruction of collagen fibers at the site of its injection.
ABSTRACT
Bothrops envenomation is a public health problem in Brazil. Despite the advances in the knowledge of the pathogenesis of systemic and local effects induced by Bothrops venom, the target tissues to this venom are not completely characterised. As preadipocytes are important cells of the adipose tissue and synthesize inflammatory mediators, we investigated the ability of B. moojeni snake venom (Bmv) to stimulate an inflammatory response in 3T3-L1 preadipocytes in vitro, focusing on (1) the release of PGE2, IL-6, TNF-α, MCP-1, KC, leptin and adiponectin; (2) the mechanisms involved in PGE2 release and (3) differentiation of these cells. Cytotoxicity of Bmv was determined by MTT assay. The concentrations of PGE2, cytokines and adipokines were quantified by EIA. Participation of the COX-1 and COX-2 enzymes, NF-κB and PGE2 receptors (EP1-4) was assessed using a pharmacological approach, and protein expression of the COX enzymes and P-NF-κB was analysed by western blotting. Preadipocyte differentiation was quantified by Oil Red O staining. Bmv (1 μg/mL) induced release of PGE2, IL-6 and KC and increased expression of COX-2 in preadipocytes. Basal levels of TNF-α, MCP-1, leptin and adiponectin were not modified. Treatment of cells with SC560 (COX-1 inhibitor) and NS398 (COX-2 inhibitor) inhibited Bmv-induced PGE2 release. Bmv induced phosphorylation of NF-κB, and treatment of the cells with TPCK and SN50, which inhibit distinct NF-κB domains, significantly reduced Bmv-induced PGE2 release, as did the treatment with an antagonist of PGE2 receptor EP1, unlike treatment with antagonists of EP2, EP3 or EP4. Bmv also induced lipid accumulation in differentiating cells. These results demonstrate that Bmv can activate an inflammatory response in preadipocytes by inducing the release of inflammatory mediators; that PGE2 production is mediated by the COX-1, COX-2 and NF-κB pathways; and that engagement of EP1 potentiates PGE2 synthesis via a positive feedback mechanism. Our findings highlight the role of the adipose tissue as another target for Bmv and suggest that it contributes to Bothrops envenomation by producing inflammatory mediators.
ABSTRACT
The pursuit of better therapies for disorders creating deficiencies in skeletal muscle regeneration is in progress, and several biotoxins are used in skeletal muscle research. Since recombinant proteins derived from Lonomia obliqua bristles, recombinant Lonomia obliqua Stuart-factor activator (rLosac) and recombinant Lonomia obliqua prothrombin activator protease (rLopap) act as cytoprotective agents and promote cell survival, we hypothesize that both rLosac and rLopap favour the skeletal muscle regeneration process. In the present work, we investigate the ability of these recombinant proteins rLosac and rLopap to modulate the production of key mediators of the myogenic process. The expression of myogenic regulatory factors (MRFs), cell proliferation, the production of prostaglandin E2 (PGE2) and the protein expression of cyclooxygenases COX-1 and COX-2 were evaluated in C2C12 mouse myoblasts pre-treated with rLosac and rLopap. We found an increased proliferation of myoblasts, stimulated by both recombinant proteins. Moreover, these proteins modulated PGE2 release and MRFs activities. We also found an increased expression of the EP4 receptor in the proliferative phase of C2C12 cells, suggesting the involvement of this receptor in the effects of PGE2 in these cells. Moreover, the recombinant proteins inhibited the release of IL-6 and PGE2, which is induced by an inflammatory stimulus by IL-1β. This work reveals rLopap and rLosac as promising proteins to modulate processes involving tissue regeneration as occurs during skeletal muscle injury.
ABSTRACT
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
ABSTRACT
Instituto Butantan (São Paulo, Brazil) and Instituto Clodomiro Picado (San José, Costa Rica) are public institutions devoted to scientific and technological research, production of antivenoms and other immunobiologicals, and a variety of public health interventions aimed at confronting the problem of snakebite envenoming in their countries and elsewhere. In the context of the 120th anniversary of Instituto Butantan, this work describes the historical developments in the relationship between these institutions, which has evolved into a solid cooperation platform in science, technology, and public health. The relationship between Instituto Butantan and Costa Rica started early in the 20th century, with the provision of Brazilian antivenoms to Costa Rica through the coordination of Instituto Butantan and the health system of Costa Rica, with the leadership of Clodomiro Picado Twight. After the decade of 1980, a prolific collaborative network has been established between Instituto Butantan and Instituto Clodomiro Picado (founded in 1970) in the areas of scientific and technological research in pharmacology, biochemistry, experimental pathology, immunology, and public health, as well as in antivenom development, production, preclinical evaluation, and quality control. In addition, both institutions have played a key role in the integration of regional efforts in Latin America to create a network of public institutions devoted to antivenom production and quality control, in close coordination with the Pan American Health Organization (PAHO). This long-standing partnership is an example of a highly productive south-south cooperation under a frame of solidarity and public well-being.
ABSTRACT
Matrix metalloproteinases (MMPs) are proteolytic enzymes that have been associated with the pathogenesis of inflammatory diseases and obesity. Adipose tissue in turn is an active endocrine organ capable of secreting a range of proinflammatory mediators with autocrine and paracrine properties, which contribute to the inflammation of adipose tissue and adjacent tissues. However, the potential inflammatory effects of MMPs in adipose tissue cells are still unknown. This study investigates the effects of BmooMPα-I, a single-domain snake venom metalloproteinase (SVMP), in activating an inflammatory response by 3T3-L1 preadipocytes in culture, focusing on prostaglandins (PGs), cytokines, and adipocytokines biosynthesis and mechanisms involved in prostaglandin E2 (PGE2) release. The results show that BmooMPα-I induced the release of PGE2, prostaglandin I2 (PGI2), monocyte chemoattractant protein-1 (MCP-1), and adiponectin by preadipocytes. BmooMPα-I-induced PGE2 biosynthesis was dependent on group-IIA-secreted phospholipase A2 (sPLA2-IIA), cytosolic phospholipase A2-α (cPLA2-α), and cyclooxygenase (COX)-1 and -2 pathways. Moreover, BmooMPα-I upregulated COX-2 protein expression but not microsomal prostaglandin E synthase-1 (mPGES-1) expression. In addition, we demonstrate that the enzymatic activity of BmooMPα-I is essential for the activation of prostanoid synthesis pathways in preadipocytes. These data highlight preadipocytes as important targets for metalloproteinases and provide new insights into the contribution of these enzymes to the inflammation of adipose tissue and tissues adjacent to it.
ABSTRACT
Adipose tissue secretes proinflammatory mediators which promote systemic and adipose tissue inflammation seen in obesity. Group IIA (GIIA)-secreted phospholipase A2 (sPLA2) enzymes are found to be elevated in plasma and adipose tissue from obese patients and are active during inflammation, generating proinflammatory mediators, including prostaglandin E2 (PGE2). PGE2 exerts anti-lipolytic actions and increases triacylglycerol levels in adipose tissue. However, the inflammatory actions of GIIA sPLA2s in adipose tissue cells and mechanisms leading to increased PGE2 levels in these cells are unclear. This study investigates the ability of a representative GIIA sPLA2, MT-III, to activate proinflammatory responses in preadipocytes, focusing on the biosynthesis of prostaglandins, adipocytokines and mechanisms involved in these effects. Our results showed that MT-III induced biosynthesis of PGE2, PGI2, MCP-1, IL-6 and gene expression of leptin and adiponectin in preadipocytes. The MT-III-induced PGE2 biosynthesis was dependent on cytosolic PLA2 (cPLA2)-α, cyclooxygenases (COX)-1 and COX-2 pathways and regulated by a positive loop via the EP4 receptor. Moreover, MT-III upregulated COX-2 and microsomal prostaglandin synthase (mPGES)-1 protein expression. MCP-1 biosynthesis induced by MT-III was dependent on the EP4 receptor, while IL-6 biosynthesis was dependent on EP3 receptor engagement by PGE2. These data highlight preadipocytes as targets for GIIA sPLA2s and provide insight into the roles played by this group of sPLA2s in obesity.
ABSTRACT
In this study, we investigated the effects and mechanisms of the pro-inflammatory cytokines IL-1β and TNF-α on the proliferation and commitment phases of myoblast differentiation. C2C12 mouse myoblast cells were cultured to reach a proliferated or committed status and were incubated with these cytokines for the evaluation of cell proliferation, cyclooxygenase 2 (COX-2) expression, release of prostaglandins (PGs) and myokines, and activation of myogenic regulatory factors (MRFs). We found that inhibition of the IL-6 receptor reduced IL-1β- and TNF-α-induced cell proliferation, and that the IL-1β effect also involved COX-2-derived PGs. Both cytokines modulated the release of the myokines myostatin, irisin, osteonectin, and IL-15. TNF-α and IL-6 reduced the activity of Pax7 in proliferated cells and reduced MyoD and myogenin activity at both proliferative and commitment stages. Otherwise, IL-1β increased myogenin activity only in committed cells. Our data reveal a key role of IL-6 and COX-2-derived PGs in IL-1β and TNF-α-induced myoblast proliferation and support the link between TNF-α and IL-6 and the activation of MRFs. We concluded that IL-1β and TNF-α induce similar effects at the initial stages of muscle regeneration but found critical differences between their effects with the progression of the process, bringing new insights into inflammatory signalling in skeletal muscle regeneration
ABSTRACT
Phospholipase A2s constitute a wide group of lipid-modifying enzymes which display a variety of functions in innate immune responses. In this work, we utilized mass spectrometry-based lipidomic approaches to investigate the action of Asp-49 Ca2+-dependent secreted phospholipase A2 (sPLA2) (MT-III) and Lys-49 sPLA2 (MT-II), two group IIA phospholipase A2s isolated from the venom of the snake Bothrops asper, on human peripheral blood monocytes. MT-III is catalytically active, whereas MT-II lacks enzyme activity. A large decrease in the fatty acid content of membrane phospholipids was detected in MT III-treated monocytes. The significant diminution of the cellular content of phospholipid-bound arachidonic acid seemed to be mediated, in part, by the activation of the endogenous group IVA cytosolic phospholipase A2a. MT-III triggered the formation of triacylglycerol and cholesterol enriched in palmitic, stearic, and oleic acids, but not arachidonic acid, along with an increase in lipid droplet synthesis. Additionally, it was shown that the increased availability of arachidonic acid arising from phospholipid hydrolysis promoted abundant eicosanoid synthesis. The inactive form, MT-II, failed to produce any of the effects described above. These studies provide a complete lipidomic characterization of the monocyte response to snake venom group IIA phospholipase A2, and reveal significant connections among lipid droplet biogenesis, cell signaling and biochemical pathways that contribute to initiating the inflammatory response.
ABSTRACT
The snake venom miotoxin (MT)-III is a group IIA secreted phospholipase A2 (sPLA2) with pro-inflammatory activities. Previous studies have demonstrated that MT-III has the ability to stimulate macrophages to release inflammatory lipid mediators derived from arachidonic acid metabolism. Among them, we highlight prostaglandin (PG)E2 produced by the cyclooxygenase (COX)-2 pathway, through activation of nuclear factor (NF)-capaB. However, the mechanisms coordinating this process are not fully understood. This study investigates the regulatory mechanisms exerted by other groups of bioactive eicosanoids derived from 12-lipoxygenase (12-LO), in particular 12-hydroxyeicosatetraenoic (12-HETE), on group IIA sPLA2-induced (i) PGE2 release, (ii) COX-2 expression, and (iii) activation of signaling pathways p38 mitogen-activated protein kinases(p38MAPK), protein C kinase (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-?B. Stimulation of macrophages with group IIA sPLA2 resulted in release of 12-HETE without modification of 12-LO protein levels. Pre-treatment of these cells with baicalein, a 12-LO inhibitor, decreased the sPLA2-induced PGE2 production, significantly reduced COX-2 expression, and inhibited sPLA2-induced ERK; however, it did not affect p38MAPK or PKC phosphorylation. In turn, sPLA2-induced PGE2 release and COX-2 expression, but not NF-capaB activation, was attenuated by pre-treating macrophages with PD98059 an inhibitor of ERK1/2. These results suggest that, in macrophages, group IIA sPLA2-induced PGE2 release and COX-2 protein expression are distinctly mediated through 12-HETE followed by ERK1/2 pathway activation, independently of NF-?B activation. These findings highlight an as yet undescribed mechanism by which 12-HETE regulates one of the distinct signaling pathways for snake venom group IIA sPLA2-induced PGE2 release and COX-2 expression in macrophages.
ABSTRACT
Inflammatory joint conditions are characterized by synovial inflammation, which involves activation of fibroblast-like synoviocytes (FLSs) and production of inflammatory mediators and matrix metalloproteases (MMPs) in joints. This study showed that the snake venom metalloprotease (SVMP) BaP1 activates FLSs to produce PGE2 by a mechanism dependent on COX-2, mPGES-1 and iPLA2s. BaP1 also induces IL-1ß release, which up-regulates the production of PGE2 at a late stage of the stimulation. Expression of COX-2 and mPGES-1 are induced by BaP1 via activation of NF-capaB pathway. While NF-capaB p50 and p65 subunits are involved in up-regulation of COX-2 expression, only p65 is involved in BaP1-induced mPGES-1 expression. In addition, BaP1 up-regulates EP4 receptor expression. Engagement of this receptor by PGE2 triggers a positive feedback loop for its production by up-regulating expression of key components of the PGE2 biosynthetic cascade (COX-2, mPGES-1 and the EP4 receptor), thus contributing to amplification of BaP1-induced effects in FLSs. These data highlight the importance of FLS as a target for metalloproteases in joint inflammation and provide new insights into the roles of MMPs in inflammatory joint diseases. Moreover, our results may give insights into the importance of the catalytic domain, of MMPs for the inflammatory activity of these enzymes.
ABSTRACT
Viper snake Crotalus durissus ruruima (Cdr) is a subspecies found in northern area of Brazil. Among the snakes of Crotalus genus subspecies, the venom of Cdr presents highest level of crotoxin, which is the major component of Crotalus snake venoms, formed by two subunits (crotapotin and a phospholipase A2 named CBr) and presents potent neurotoxic activity. Curiously, the venom of C. d. ruruima (CdrV) is better neutralized by antibothropic than by anticrotalic serum, strongly suggesting that this venom has similarities with venom of Bothrops genus snakes with regard to the ability to induce inflammation. Macrophages are cells with a central role in inflammatory and immunological responses. Upon inflammatory stimuli, these cells exhibit increased numbers of lipid droplets, which are key organelles in the synthesis and release of inflammatory mediators. However, the effects of CdrV and CBr in macrophage functions are unknown. We herein investigated the ability of CdrV and CBr to activate macrophages with focus on the formation of lipid droplets (LDs), synthesis of lipid mediators, and mechanisms involved in these effects. The involvement of LDs in PGE2 biosynthesis was also assessed. Stimulation of murine macrophages with CdrV and CBr induced an increased number of LDs and release of prostanoids (PGE2, PGD2, and TXB2). Neither CdrV nor CBr induced the expression of COX-1 and COX-2 by macrophages. LDs induced by both CdrV and CBr are associated to PLIN2 recruitment and expression and were shown to be dependent on COX-1, but not COX-2 activity. Moreover, PGE2 colocalized to CdrV- and CBr-induced LDs, revealing the role of these organelles as sites for the synthesis of prostanoids. These results evidence, for the first time, the ability of a whole snake venom to induce formation of LDs and the potential role of these organelles for the production of inflammatory mediators during envenomation by Crotalus snakes.
ABSTRACT
Vascular smooth muscle cells (VSMCs) loaded with lipid droplets (LDs) are markers of atherosclerosis. In this disease, inflammatory Group IIA-secreted phospholipase A2s (GIIA sPLA2s) are highly expressed in VSMCs, but their actions in these cells are unknown. Here, we investigated the ability of myotoxin III (MT-III), an ophidian GIIA sPLA2 sharing structural and functional features with mammalian GIIA sPLA2s, to induce LD formation and lipid metabolism factors involved in this effect. Modulation of VSMC phenotypes by this sPLA2 was also evaluated. Incubation of VSMCs with MT-III significantly increased the number of LDs. MT-III upregulated scavenger receptor type 1 (SR-A1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) protein expression and enhanced acetylated-low density lipoprotein (acLDL) uptake by VSMCs, revealing the ability of a GIIA PLA2 to modulate scavenger receptor activities. MT-III induced translocation and protein expression of PPAR-gama and -ß/d. Inhibition of peroxisome proliferator-activated receptors (PPARs) and diacylglycerol O-acyltransferase (DGAT) and acyl-CoA:cholesterolacyltransferase (ACAT) enzymes abrogated MT-III-induced LD formation. Moreover, in response to MT-III, VSMCs acquired phagocytic activity and expressed macrophage markers CD68 and MAC-2. In conclusion, MT-III is able to stimulate VSMCs and recruit factors involved in lipid uptake and metabolism, leading to the formation of VSMC-derived foam cells with acquisition of macrophage-like markers and functions.
ABSTRACT
Envenomation by viperid snakes is characterized by systemic thrombotic syndrome and prominent local inflammation. To date, the mechanisms underlying inflammation and blood coagulation induced by Viperidae venoms have been viewed as distinct processes. However, studies on the mechanisms involved in these processes have revealed several factors and signaling molecules that simultaneously act in both the innate immune and hemostatic systems, suggesting an overlap between both systems during viper envenomation. Moreover, distinct classes of venom toxins involved in these effects have also been identified. However, the interplay between inflammation and hemostatic alterations, referred as to thromboinflammation, has never been addressed in the investigation of viper envenomation. Considering that platelets are important targets of viper snake venoms and are critical for the process of thromboinflammation, in this review, we summarize the inflammatory effects and mechanisms induced by viper snake venoms, particularly from the Bothrops genus, which strongly activate platelet functions and highlight selected venom components (metalloproteases and C-type lectins) that both stimulate platelet functions and exhibit pro-inflammatory activities, thus providing insights into the possible role(s) of thromboinflammation in viper envenomation.
ABSTRACT
MT-III, a snake venom GIIA sPLA(2), which shares structural and functional features with mammalian GIIA sPLA(2)s, activates macrophage defense functions including lipid droplet (LDs) formation, organelle involved in both lipid metabolism and inflammatory processes. Macrophages (M Phi s) loaded with LDs, termed foam cells, characterize early blood vessel fatty-streak lesions during atherosclerosis. However, the factors involved in foam cell formation induced by a GIIA sPLA(2) are still unknown. Here, we investigated the participation of lipid homeostasis-related factors in LD formation induced by MT-III in macrophages. We found that MT-III activated PPAR-gamma and PPAR-beta/delta and increased the protein levels of both transcription factors and CD36 in macrophages. Pharmacological interventions evidenced that PPAR-gamma, PPAR-beta/delta, and CD36 as well as the endoplasmic reticulum enzymes ACAT and DGAT are essential for LD formation. Moreover, PPAR-beta/delta, but not PPAR-gamma, is involved in MT-III-induced PLIN2 protein expression, and both PPAR-beta/delta and PPAR-gamma upregulated CD36 protein expression, which contributes to MT-III-induced COX-2 expression. Furthermore, production of 15-d-PGJ2, an activator of PPARs, induced by MT-III, was dependent on COX-1 being LDs an important platform for generation of this mediator.
ABSTRACT
Phagocytosis, a process involved in host defense, requires coordination of a variety of signaling reactions. MT-II, a catalytically-inactive Lys49-PLA(2), and MT-III, an active Asp49-PLA(2) isolated from Bothrops asper snake venom, activate phagocytosis in macrophages. In this study the signal pathways mediating zymosan phagocytosis, focusing in lipidic second messengers, were investigated. Macrophages collected from male Swiss mouse peritoneum were obtained 96 h after i.p. injection of thioglycollate. Phagocytosis was evaluated with non-opsonized zymosan in the presence or absence of specific inhibitors. Data showed that both venom PLA(2)s increased phagocytosis. Zileuton, Etoricoxib, PACOCF3 (5-LO, COX-2 and iPLA(2) inhibitors, respectively), as well as WEB2170 (PAF receptor antagonist) significantly reduced phagocytosis induced by both venom PLA(2)s. However, Indomethacin (COX-1/COX-2 inhibitor) and Montelukast (CysL receptor antagonist) did not affect the toxins-induced phagocytosis. Moreover, while PACOCF3 (iPLA(2) inhibitor), reduced the phagocytosis induced by MT-II and MT-III, AACOCF3 (cPLA(2) inhibitor) significantly reduced the MT-II, but not MT-Ill-induced phagocytosis. These data suggest the effect of both sPLA(2)s depends on IPLA(2) and that the effect of MT-II depends on activation of cPLA(2). COX-2 and 5-W-derived metabolites as well as PAF are involved in the signaling events required for phagocytosis induced by both venom sPLA(2)s.
ABSTRACT
Inflammation is a major local feature of envenomation by bothropic snakes being characterized by a prominent local edema, pain, and extensive swelling. There are reports demonstrating that whole Bothrops snake venoms and toxins isolated from them are able to activate macrophages functions, such as phagocytosis, production of reactive oxygen, cytokines and eicosanoids, however, little is known about the effects of Bothrops alternatus (B.alpha.) venom on macrophages. In this work, we evaluated the proinflammatory effects of B.alpha. venom with in vivo and in vitro experiments using the Raw 264.7 cell line and mouse peritoneal macrophages. We detected that B.alpha. venom augments cell permeability (2-fold), and cellular extravasation (mainly neutrophils), increase proinflammatory cytokines IL1 (similar to 300-fold), IL12 (similar to 200-fold), and TNF alpha (similar to 80-fold) liberation and induce the expression of enzymes related to lipid signaling, such as cPLA(2 alpha) and COX-2. Additionally, using lipidomic techniques we detected that this venom produces a release of arachidonic acid (similar to 10 nMol/mg. Protein) and other fatty acids (16:0 and 18:1 n-9c). Although much of these findings were described in inflammatory processes induced by other bothropic venoms, here we demonstrate that B.alpha. venom also stimulates pro-inflammatory pathways involving lipid mediators of cell signaling. In this sense, lipidomics analysis of macrophages stimulated with B.alpha. venom evidenced that the main free fatty acids are implicated in the inflammatory response, and also demonstrated that this venom, is able to activate lipid metabolism even with a low content of PLA(2).