Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oper Dent ; 45(4): 377-386, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31794341

ABSTRACT

CLINICAL RELEVANCE: Irradiance may decrease as the light-emitting diode (LED) is discharged. Therefore, the LED must be charged carefully to prevent the possibility of influencing the chemical, mechanical, and physical properties of composite resin. SUMMARY: The aim of this study was to evaluate the influence of different light-emitting diode (LED) curing units and battery levels on the chemical, mechanical, and physical properties of composite resins. The irradiance for each cycle from full to completely discharged battery level was evaluated, for five different new cordless LED units: Optilight Color (Gnatus), Bluephase (Ivoclar), Valo (Ultradent), Radii Plus (SDI), and Radii Xpert (SDI). After the irradiance evaluation, composite resin specimens were prepared and light cured, while varying the battery level for each LED unit: high level (HL, 100%), medium level (ML, 50%), and low level (LL, 10%). The degree of conversion, diametral tensile strength, sorption, and solubility were also evaluated. Data were checked for homoscedasticity and submitted to two-way and three-way analysis of variance, depending on the test performed, followed by the Tukey test with a significance level of 95%. A negative correlation was found between irradiance and cycles of light curing, which was checked by the Pearson correlation test. Valo and Radii Xpert were not influenced by the battery level in any test performed. However, different battery levels for some LED units can influence the degree of conversion, diametral tensile strength, sorption, and solubility of composite resins.


Subject(s)
Composite Resins , Curing Lights, Dental , Electric Power Supplies , Materials Testing , Tensile Strength
2.
Oper Dent ; 41(4): 409-16, 2016.
Article in English | MEDLINE | ID: mdl-26919084

ABSTRACT

The properties of composite resins can be influenced by light activation, depending primarily on the performance of the curing unit. The aim of this study was to evaluate how different battery levels of a cordless light-emitting diode (LED) unit influence the properties of a nanofilled composite resin. First, the battery voltage and light intensity of the cordless LED unit were individually checked for all light-curing cycles. Then, composite resin discs were prepared and light-cured at different battery levels: high level (HL, 100%), medium level (ML, 50%), and low level (LL, 10%). The degree of conversion, diametral tensile strength, sorption, and solubility of the specimens were tested. Data were checked for homoscedasticity and submitted to one-way analysis of variance followed by Tukey honestly significant difference and Pearson correlation tests (p<0.05). The battery voltage and light intensity varied significantly among the groups (p<0.001). The LL group presented a lower degree of conversion than the HL and ML groups (p<0.001), which shower similar results (p=0.182). Lower diametral tensile strength was also verified for the LL group when compared with the HL and ML groups (p<0.001), which presented no difference (p=0.052). Positive correlation was observed between the light intensity and the parameters studied, with the exception of sorption and solubility (p<0.001). The ML and LL groups showed higher sorption than the HL group (p <0.001), but no difference was verified between the first two groups (p=0.535). No significant differences were found for solubility between the ML and LL groups (p=0.104), but the HL group presented lower values (p<0.001). The different battery levels of the cordless LED curing unit influenced all the properties of the nanofilled composite resin evaluated.


Subject(s)
Composite Resins , Curing Lights, Dental , Electric Power Supplies , Humans , Materials Testing , Surface Properties , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...