Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Endocrinology ; 142(9): 3764-73, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11517152

ABSTRACT

Excessive GHRH stimulation leads to somatotrope hyperplasia and, ultimately, pituitary adenoma formation in the metallothionein promoter-driven human GHRH (hGHRH) transgenic mouse. This pituitary phenotype is similar to that observed in humans with ectopic production of GHRH. In both mice and man, GHRH hyperstimulation also results in dramatic increases in circulating GH and IGF-I. To determine whether GH/IGF-I modulates the development and growth rate of GHRH-induced pituitary tumors, pituitary growth and histology were evaluated in mice generated from cross-breeding metallothionein promoter-driven hGHRH transgenic mice with GH receptor binding protein (GHR) gene disrupted mice (GHR(-/-)). Expression of the hGHRH transgene in 2-month-old GHR intact (GHR(+)) mice resulted in the doubling of pituitary weight that was largely attributed to an increase in the number of GH-immunopositive cells. Pituitary weight of GHR(+) hGHRH mice did not significantly change between 2 and 6 months of age, whereas at 12 months, weights increased up to 100-fold those of GHR(+) pituitaries, and 70% of the glands contained grossly visible adenomas. All adenomas stained positively for GH, whereas some showed scattered PRL staining. Pituitaries of GHR(-/-) mice were half the size of those of GHR(+) mice. Although reduced in size, the histological features of GHR(-/-) mouse pituitaries were suggestive of somatotrope hyperplasia. Despite evidence of somatotrope hyperplasia, pituitaries from GHR(-/-) mice as old as 28 months of age were similar in size to those of 2-month-old mice and did not show signs of adenoma formation. Expression of the hGHRH transgene in GHR(-/-) mice did not significantly increase pituitary size between 2 and 6 months of age. However, at 12 months the majority of GHR(-/-), hGHRH pituitaries developed adenomas with mean pituitary weight and histological features similar to those of GHR(+), hGHRH mice. These observations demonstrate that intact GH signaling is not required for GHRH tumor formation. Although the majority of GHR(+), hGHRH and GHR(-/-), hGHRH pituitaries developed tumors by 12 months of age, a small subset remained morphologically indistinct from those at 2 months of age. These observations taken together with the fact that overt tumor formation is preceded by a static pituitary growth phase between 2 and 6 months, indicates that protective mechanisms are in place to maintain pituitary mass despite hGHRH hyperstimulation.


Subject(s)
Adenoma/etiology , Growth Hormone-Releasing Hormone/pharmacology , Growth Hormone/physiology , Pituitary Gland, Anterior/pathology , Pituitary Neoplasms/etiology , Signal Transduction/physiology , Aging/physiology , Animals , Gene Expression/physiology , Humans , Hyperplasia , Male , Metallothionein/genetics , Mice , Mice, Inbred Strains , Mice, Knockout/genetics , Phenotype , Pituitary Gland/cytology , Pituitary Gland/physiology , Promoter Regions, Genetic/physiology , Receptors, Somatotropin/deficiency , Receptors, Somatotropin/genetics , Receptors, Somatotropin/physiology , Reference Values , Transgenes/genetics
2.
Recent Prog Horm Res ; 55: 269-90; discussion 290-1, 2000.
Article in English | MEDLINE | ID: mdl-11036941

ABSTRACT

Somatotrope function requires consideration of both growth hormone (GH) secretion and cellular proliferation. The regulation of these processes is, to a large extent, controlled by three hypothalamic hormones: GH-releasing hormone (GHRH), somatostatin (SRIF), and an as-yet-unidentified GH secretagogue (GHS). Each binds to G protein-linked membrane receptors through which signaling occurs. Our laboratory has used a series of genetic and transgenic models with perturbations of individual components of the GH regulatory system to study both somatotrope signaling and proliferation. Impaired GHRH signaling is present in the lit mouse, which has a GHRH receptor (R) mutation, and the dw rat, which has a post-receptor signaling defect. Both models also have impaired responses to a GHS, implying an interaction between the two signaling systems. The spontaneous dwarf rat (SDR), in which a mutation of the GH gene results in total absence of the hormone, shows characteristic changes in the hypothalamic regulatory hormones due to an absence of GH feedback and alterations in the expression of each of their pituitary receptors. Treatment of SDRs with GHRH and a GHS has allowed demonstration of a stimulatory effect of GHRH on GHRH-R, GHS-R, and SRIF type 2 receptor (SSTR-2) expression and an inhibitory effect on SSTR-5 expression. GH also modifies the expression of these receptors, though its effects are seen at later time periods and appear to be indirect. Overall, the results indicate a complex regulation of GH secretion in which somatotrope receptor, as well as ligand expression, exerts an important physiological role. Both the SDR and the GH-R knockout (ko) mouse have small pituitaries and decreased somatotropes, despite elevated GHRH secretion and intact GHRH-R signaling. Introduction of the hGHRH transgene into GH-R ko mice confirmed that the proliferative effects of GHRH require GH/insulin-like growth factor-I (IGF-I) action. The results offer new insights into factors participating in somatotrope proliferation.


Subject(s)
Growth Hormone/physiology , Neurosecretory Systems/physiology , Animals , Cell Division , Growth Hormone-Releasing Hormone/physiology , Humans , Mice , Models, Neurological , Neurosecretory Systems/cytology , Rats , Signal Transduction , Somatostatin/physiology
3.
Oncogene ; 19(15): 1875-84, 2000 Apr 06.
Article in English | MEDLINE | ID: mdl-10773877

ABSTRACT

p27Kip1 (p27) controls cell cycle progression by binding to and inhibiting the activity of cyclin dependent kinases. Disruption of the p27 gene in mice (p27-/-) results in increased body growth with a disproportionate enlargement of the spleen, thymus, testis, ovary and pituitary. The increase in pituitary size is due to selective hyperplasia of the intermediate lobe (IL) while the anterior lobe (AL) is not overtly affected. p27 heterozygous mice (p27+/-), as well as p27-/- mice, are hypersensitive to radiation- and chemical-induced tumors compared to wildtype (p27+/+) littermates. Therefore, unlike classical tumor suppressors, only a reduction in p27 levels is necessary to predispose tissues to secondary tumor promoters. Consistent with these studies is the fact that the p27 gene sequence and mRNA levels appear normal in human pituitary adenomas while p27 protein levels are decreased. Therefore, a reduction in p27 levels could be sufficient to sensitize pituitary cells to tumorigenic factors. To test this hypothesis, metallothionein promoter-driven, human growth hormone-releasing hormone (MT-hGHRH) transgenic mice, that exhibit somatotrope hyperplasia before 9 months of age and subsequent adenoma formation with 30 - 40% penetrance, were crossbred with p27+/- mice for two successive generations to produce p27+/+, p27+/- and p27-/- mice that expressed the hGHRH transgene. At 10 - 12 weeks of age, p27-/- and p27+/+, hGHRH mice were larger than their p27+/+ littermates and displayed characteristic hyperplasia of the IL and AL, respectively. Expression of the hGHRH transgene in both p27+/- and p27-/- mice selectively expanded the population of somatotropes within the AL, where pituitaries of p27+/-, hGHRH and p27-/-, hGHRH mice were two- and fivefold larger than p27+/+, hGHRH pituitaries, respectively. There was also a synergistic effect of hGHRH transgene expression and p27-deficiency on liver, spleen and ovarian growth. At 6 - 8 months of age, 83% of p27+/-, hGHRH mice displayed macroscopic AL adenomas (>100 mg), while all pituitaries from p27+/+, hGHRH mice remained hyperplastic (<20 mg). In contrast to the dramatic effects of p27-deficiency on hGHRH-induced organ growth, elimination of p53, by crossbreeding MT-hGHRH mice to p53-deficient mice, did not augment the hyperplastic/tumorigenic effects of hGHRH transgene expression. Taken together these results demonstrate that a reduction in p27 expression is sufficient to sensitize somatotropes to the proliferative actions of excess GHRH, resulting in the earlier appearance and increased penetrance of hGHRH-induced pituitary tumors.


Subject(s)
Adenoma/genetics , Cell Cycle Proteins , Cyclin-Dependent Kinases/antagonists & inhibitors , Growth Hormone-Releasing Hormone/pharmacology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Pituitary Neoplasms/genetics , Tumor Suppressor Proteins , Age Factors , Animals , Cyclin-Dependent Kinase Inhibitor p27 , Genes, Tumor Suppressor , Humans , Hyperplasia , Liver/pathology , Mice , Mice, Transgenic , Pituitary Gland/pathology , Spleen/pathology
4.
Arq. bras. med. vet. zootec ; 48(5): 559-65, out. 1996. tab
Article in Portuguese | LILACS | ID: lil-256967

ABSTRACT

O experimento envolveu 10 vacas mestiças de Zebu e suas respectivas crias, divididas em cinco grupos cada um com duas vacas e seus respectivos bezerros. No grupo I, as crias estavam com 30 dias de idade, no II com 60, no III com 90, no IV com 120 e no V com 150. Foram feitas três observaçöes intervaladas de sete dias, durante as quais o comportamento mäe/cria foi monitorado continuamente durante 12 horas (das seis às 18 horas). Os resultados mostraram frequência de amamentaçöes de 5,33, tempo dispendido com cada amamentaçäo de 8,90 minutos, tempo diário total de amamentaçöes de 46,41 minutos e intervalo médio de amamentaçäo de 151 minutos, näo tendo sido verificada diferença significativa entre grupos. A amamentaçäo foi mais frequente entre seis e sete (7,4 amamentaçöes) e entre 17 e 18 horas (quatro amamentaçöes), sendo a frequência de amamentaçöes no primeiro horário significativamente superior aos demais (P<0,05)


Subject(s)
Animals, Suckling
SELECTION OF CITATIONS
SEARCH DETAIL
...