Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(5)2021 05 06.
Article in English | MEDLINE | ID: mdl-34066372

ABSTRACT

In plant-virus interactions, the plant immune system and virulence strategies are under constant pressure for dominance, and the balance of these opposing selection pressures can result in disease or resistance. The naturally evolving plant antiviral immune defense consists of a multilayered perception system represented by pattern recognition receptors (PRR) and resistance (R) proteins similarly to the nonviral pathogen innate defenses. Another layer of antiviral immunity, signaling via a cell surface receptor-like kinase to inhibit host and viral mRNA translation, has been identified as a virulence target of the geminivirus nuclear shuttle protein. The Geminiviridae family comprises broad-host range viruses that cause devastating plant diseases in a large variety of relevant crops and vegetables and hence have evolved a repertoire of immune-suppressing functions. In this review, we discuss the primary layers of the receptor-mediated antiviral immune system, focusing on the mechanisms developed by geminiviruses to overcome plant immunity.


Subject(s)
Geminiviridae/immunology , Geminiviridae/pathogenicity , Host-Pathogen Interactions/immunology , Plant Diseases/virology , Plant Immunity , Receptors, Pattern Recognition/immunology , Crops, Agricultural/virology , Geminiviridae/genetics , Genome, Viral , Plant Immunity/genetics , Plant Immunity/immunology , Signal Transduction
2.
Microorganisms ; 9(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917649

ABSTRACT

Geminiviruses are circular single-stranded DNA plant viruses encapsidated into geminate virion particles, which infect many crops and vegetables and, hence, represent significant agricultural constraints worldwide. To maintain their broad-range host spectrum and establish productive infection, the geminiviruses must circumvent a potent plant antiviral immune system, which consists of a multilayered perception system represented by RNA interference sensors and effectors, pattern recognition receptors (PRR), and resistance (R) proteins. This recognition system leads to the activation of conserved defense responses that protect plants against different co-existing viral and nonviral pathogens in nature. Furthermore, a specific antiviral cell surface receptor signaling is activated at the onset of geminivirus infection to suppress global translation. This review highlighted these layers of virus perception and host defenses and the mechanisms developed by geminiviruses to overcome the plant antiviral immunity mechanisms.

3.
Nat Commun ; 10(1): 4996, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676803

ABSTRACT

Plants deploy various immune receptors to recognize pathogens and defend themselves. Crosstalk may happen among receptor-mediated signal transduction pathways in the same host during simultaneous infection of different pathogens. However, the related function of the receptor-like kinases (RLKs) in thwarting different pathogens remains elusive. Here, we report that NIK1, which positively regulates plant antiviral immunity, acts as an important negative regulator of antibacterial immunity. nik1 plants exhibit dwarfed morphology, enhanced disease resistance to bacteria and increased PAMP-triggered immunity (PTI) responses, which are restored by NIK1 reintroduction. Additionally, NIK1 negatively regulates the formation of the FLS2/BAK1 complex. The interaction between NIK1 and FLS2/BAK1 is enhanced upon flg22 perception, revealing a novel PTI regulatory mechanism by an RLK. Furthermore, flg22 perception induces NIK1 and RPL10A phosphorylation in vivo, activating antiviral signalling. The NIK1-mediated inverse modulation of antiviral and antibacterial immunity may allow bacteria and viruses to activate host immune responses against each other.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Plant Immunity/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Arabidopsis/microbiology , Arabidopsis/virology , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/immunology , Host-Pathogen Interactions/immunology , Multiprotein Complexes/immunology , Multiprotein Complexes/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/virology , Plant Immunity/immunology , Plant Viruses/immunology , Plant Viruses/physiology , Plants, Genetically Modified , Protein Binding , Protein Kinases/immunology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Pseudomonas syringae/immunology , Pseudomonas syringae/physiology , Signal Transduction/genetics , Signal Transduction/immunology
4.
Mol Plant Pathol ; 20(9): 1196-1202, 2019 09.
Article in English | MEDLINE | ID: mdl-31094066

ABSTRACT

Activation of antiviral innate immune responses depends on the recognition of viral components or viral effectors by host receptors. This virus recognition system can activate two layers of host defence, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). While ETI has long been recognized as an efficient plant defence against viruses, the concept of antiviral PTI has only recently been integrated into virus-host interaction models, such as the RNA silencing-based defences that are triggered by viral dsRNA PAMPs produced during infection. Emerging evidence in the literature has included the classical PTI in the antiviral innate immune arsenal of plant cells. Therefore, our understanding of PAMPs has expanded to include not only classical PAMPS, such as bacterial flagellin or fungal chitin, but also virus-derived nucleic acids that may also activate PAMP recognition receptors like the well-documented phenomenon observed for mammalian viruses. In this review, we discuss the notion that plant viruses can activate classical PTI, leading to both unique antiviral responses and conserved antipathogen responses. We also present evidence that virus-derived nucleic acid PAMPs may elicit the NUCLEAR SHUTTLE PROTEIN-INTERACTING KINASE 1 (NIK1)-mediated antiviral signalling pathway that transduces an antiviral signal to suppress global host translation.


Subject(s)
Receptors, Pattern Recognition/metabolism , Begomovirus/pathogenicity , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases/virology , Plant Immunity/genetics , Plant Immunity/physiology , Plant Viruses/pathogenicity , Receptors, Pattern Recognition/genetics
5.
Plant Sci ; 284: 37-47, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31084877

ABSTRACT

Machine learning (ML) is a field of artificial intelligence that has rapidly emerged in molecular biology, thus allowing the exploitation of Big Data concepts in plant genomics. In this context, the main challenges are given in terms of how to analyze massive datasets and extract new knowledge in all levels of cellular systems research. In summary, ML techniques allow complex interactions to be inferred in several biological systems. Despite its potential, ML has been underused due to complex computational algorithms and definition terms. Therefore, a systematic review to disentangle ML approaches is relevant for plant scientists and has been considered in this study. We presented the main steps for ML development (from data selection to evaluation of classification/prediction models) with a respective discussion approaching functional genomics mainly in terms of pathogen effector genes in plant immunity. Additionally, we also considered how to access public source databases under an ML framework towards advancing plant molecular biology and introduced novel powerful tools, such as deep learning.


Subject(s)
Machine Learning , Molecular Biology/methods , Plants/genetics , Databases, Genetic , Plants/metabolism
6.
Mol Plant ; 11(12): 1449-1465, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30296599

ABSTRACT

The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP-DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Begomovirus/physiology , Cell Nucleus/metabolism , WW Domains , Arabidopsis/cytology , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/virology , Cytosol/metabolism , GTP Phosphohydrolases/metabolism , Protein Multimerization , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...