Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 206(1): 37-46, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-23994248

ABSTRACT

Galectin-3, a ubiquitous member of the galectin family, has been shown to control cellular proliferation, adhesion, migration and apoptosis; thus, it has a role in tumor development and progression. Galectin-3 expression is both up- and down-regulated during melanoma progression. However, conflicting data regarding its roles in tumor biology prompted us to investigate if the presence of galectin-3 influences the response of melanoma cells to a novel metallodrug because metastatic melanoma acquires chemo resistance and is reported to be redox-sensitive. Previously, it was demonstrated that the complex [bis-(2-oxindol-3-yl-imino)-2-(2-aminoethyl) pyridine-N,N'] copper (II) perchlorate, herein referred to as [Cu(isaepy)], induces ROS formation and apoptosis in neuroblastoma cells through mitochondrial uncoupling and the activation of AMPK/p38/p53 signaling. Here, we used a model of vertical growth melanoma (TM1), in which GAL3 expression is lost during tumor progression. When de novo expressed, galectin-3 was found to be ubiquitously present in all subcellular compartments. Our results demonstrate that de novo galectin-3 expression impairs the cellular antioxidant system and renders TM1G3 cells more susceptible than GAL3-null TM1MNG3 cells to [Cu(isaepy)] treatment. This compound, in contrast with the redox inactive [dichloro (2-oxindol-3-yl-imino)-2-(2-aminoethyl) pyridine-N,N'] zinc (II), herein referred to as [Zn(isaepy)], leads to increased intracellular ROS accumulation, increased carbonyl stress, increased mitochondrial depolarization, decreased cell adhesion, increased p38 activation and apoptosis in TM1G3, compared with TM1MNG3. Cell death was shown to be dependent on a hydrogen peroxide-derived species and on the activation of p38. Because mitochondria are a target of both [Cu(isaepy)] and galectin-3, we propose that the presence of galectin-3 in this organelle favors increased ROS production, thereby inducing oxidative cellular damage and apoptotic death. Therefore, [Cu(isaepy)] may be envisaged as a possible anti-melanoma strategy, particularly for melanomas that express galectin-3.


Subject(s)
Copper/pharmacology , Galectin 3/biosynthesis , Melanoma/metabolism , Organometallic Compounds/pharmacology , Animals , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper/chemistry , Dose-Response Relationship, Drug , Galectin 3/metabolism , Melanoma/pathology , Mice , Organometallic Compounds/chemistry , Oxidation-Reduction , Structure-Activity Relationship
2.
Proteomics ; 6(5): 1460-70, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16429458

ABSTRACT

Using 2-DE of total cell protein extracts, we compared soluble proteins from murine melanoma lines Tm1 and Tm5 with proteins from the nontumoral cell melan-a from which they were derived. Seventy-one of the 452 spots (average) detected with CBB were differentially accumulated, i.e., increased or decreased twofold. Forty-four spots were identified by PMF/MALDI-TOF, 15 with increased and 29 with decreased protein levels. SAGE showed that 17/34 (50%) of the differentially accumulated proteins, pI range 4-7, presented similar differences at the mRNA level. Major reductions in protein were observed in tumor cells of proteins that degrade reactive oxygen species (ROS). Decreases of > or = twofold in GST, superoxide dismutase, aldehyde dehydrogenase, thioredoxin, peroxiredoxin 2, and peroxiredoxin 6 protein were observed. SAGE indicated the reduction of other proteins involved in ROS degradation. As expected, the accumulation of exogenous peroxides was significantly higher in the tumor cells while the levels of glutathionylation were two times lower in the tumor cells compared to melan-a. The differential accumulation of proteins involved in oncogene/tumor suppressor pathways was observed. Melanoma cells can favor survival pathways activated by ROS by inhibiting p53 pathways and activation of Ras and c-myc pathways.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Melanoma , Neoplasm Proteins , Proteome/analysis , Proteomics , Reactive Oxygen Species/metabolism , Animals , Cell Line, Tumor , Disease Progression , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Melanoma/chemistry , Melanoma/metabolism , Melanoma/pathology , Mice , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oxidants/metabolism
3.
J Parasitol ; 89(1): 35-43, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12659300

ABSTRACT

Leishmania (Leishmania) amazonensis LV79 (MPRO/BR/72/M1841) has been adapted to grow at 33 C as amastigote-like (AL) organisms in modified UM-54 medium initially adjusted to a pH of 4.8-5.0. Axenic cultures could be routinely restarted from parasites recovered from footpad lesions obtained by inoculation of BALB/c mice with preadapted culture stages. Morphological features, proteinase activities, and infectivity of AL organisms were examined during the in vitro growth cycle, and differences were found between log- and stationary-phase parasites. Stationary-phase AL organisms were morphologically similar to lesion amastigotes, did not react with a paraflagellar rod-specific monoclonal antibody in western blots, and contained proteinase activities resolving identically to the enzymes of lesion amastigotes in gelatin gels. Whereas typical megasomes could be identified in about a third of the stationary-phase AL population, the organelles were rarely seen in log-phase organisms. Azocaseinolytic activity progressively increased during the exponential growth phase and reached its highest values (approximately 65-70% of those determined in lesion amastigotes) at the stationary phase; the association of total proteinase activity with increased expression of cysteine proteinases was indicated by the strong inhibition of azocasein hydrolysis by E-64, the intensified banding of the 28-, 31-, and 35-kDa proteinases in gelatin gels, and the higher susceptibility of stationary-phase AL organisms to L-leucine methyl ester. Although overall axenic amastigotes were less infective to BALB/c mice than were lesion-derived parasites, stationary-phase AL organisms were more infective than were log-phase parasites. Medium pH increased during the exponential growth phase, but dropped in the stationary phase, when the observed morphological, biochemical, and biological changes became apparent.


Subject(s)
Endopeptidases/metabolism , Leishmania mexicana/physiology , Leishmaniasis, Cutaneous/parasitology , Animals , Culture Media , Hydrogen-Ion Concentration , Leishmania mexicana/enzymology , Leishmania mexicana/growth & development , Leishmania mexicana/ultrastructure , Leishmaniasis, Cutaneous/pathology , Mice , Mice, Inbred BALB C , Microscopy, Electron , Microscopy, Interference , Serial Passage
SELECTION OF CITATIONS
SEARCH DETAIL
...