Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 958820, 2022.
Article in English | MEDLINE | ID: mdl-36189282

ABSTRACT

Chikungunya fever is a viral disease transmitted by mosquitoes of the genus Aedes. The infection is usually symptomatic and most common symptoms are fever accompanied by joint pain and swelling. In most cases symptoms subside within a week. However, severe prolonged and disabling joint pain, that may persist for several months, even years, are reported. Although the pathogenesis of Chikungunya infection is not fully understood, the evolution to severe disease seems to be associated with the activation of immune mechanisms and the action of inflammatory mediators. Platelets are recognized as inflammatory cells with fundamental activities in the immune response, maintenance of vascular stability and pathogenicity of several inflammatory and infectious diseases. Although the involvement of platelets in the pathogenesis of viral diseases has gained attention in recent years, their activation in Chikungunya has not been explored. The aim of this study was to analyze platelet activation and the possible role of platelets in the amplification of the inflammatory response during Chikungunya infection. We prospectively included 132 patients attended at the Quinta D'Or hospital and 25 healthy volunteers during the 2016 epidemic in Rio de Janeiro, Brazil. We observed increased expression of CD62P on the surface of platelets, as well as increased plasma levels of CD62P and platelet-derived inflammatory mediators indicating that the Chikungunya infection leads to platelet activation. In addition, platelets from chikungunya patients exhibit increased expression of NLRP3, caspase 4, and cleaved IL-1ß, suggestive of platelet-inflammasome engagement during chikungunya infection. In vitro experiments confirmed that the Chikungunya virus directly activates platelets. Moreover, we observed that platelet activation and soluble p-selectin at the onset of symptoms were associated with development of chronic forms of the disease. Collectively, our data suggest platelet involvement in the immune processes and inflammatory amplification triggered by the infection.


Subject(s)
Chikungunya Fever , Inflammasomes , Animals , Arthralgia , Brazil , Caspases , Humans , Inflammasomes/metabolism , Inflammation Mediators , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , P-Selectin , Platelet Activation
2.
Exp Cell Res ; 399(2): 112473, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33428902

ABSTRACT

Sepsis is a complicated multi-system disorder characterized by a dysregulated host response to infection. Despite substantial progress in the understanding of mechanisms of sepsis, translation of these advances into clinically effective therapies remains challenging. Mesenchymal Stromal Cells (MSCs) possess immunomodulatory properties that have shown therapeutic promise in preclinical models of sepsis. The therapeutic effects of MSCs may vary depending on the source and type of these cells. In this comparative study, the gene expression pattern and surface markers of bone marrow-derived MSCs (BM-MSCs) and umbilical cord-derived MSCs (UC-MSCs) as well as their therapeutic effects in a clinically relevant mouse model of polymicrobial sepsis, cecal ligation and puncture (CLP), were investigated. The results showed remarkable differences in gene expression profile, surface markers and therapeutic potency in terms of enhancing survival and pro/anti-inflammatory responses between the two MSC types. BM-MSCs improved survival concomitant with an enhanced systemic bacterial clearance and improved inflammatory profile post CLP surgery. Despite some improvement in the inflammatory profile of the septic animals, treatment with UC-MSCs did not enhance survival or bacterial clearance. Overall, the beneficial therapeutic effects of BM-MSCs over UC-MSCs may likely be attributed to their pro-inflammatory function, and to some extent anti-inflammatory features, reflected in their gene expression pattern enhancing macrophage polarization to M1/M2 phenotypes resulting in a balanced pro- and anti-inflammatory response against polymicrobial sepsis.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Sepsis/therapy , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation/methods , Disease Models, Animal , Gene Expression Profiling , Immunophenotyping , Male , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Sepsis/genetics , Sepsis/immunology , Sepsis/pathology
3.
Redox Biol ; 38: 101796, 2021 01.
Article in English | MEDLINE | ID: mdl-33246293

ABSTRACT

Oxidative stress is considered one of the early underlying contributors of acute lung injury (ALI) and ventilator-induced lung injury (VILI). DJ-1, also known as PARK7, has a well-established role as an antioxidant. We have previously shown maintaining oxidative balance via the ATF3-Nrf2 axis was important in protection from ALI. Here, we exclusively characterize the role of DJ-1 in sterile LPS-induced ALI and VILI. DJ-1 protein expression was increased after LPS treatment in human epithelial and endothelial cell lines and lungs of wild-type mice. DJ-1 deficient mice exhibited greater susceptibility to LPS-induced acute lung injury as demonstrated by increased cellular infiltration, augmented levels of pulmonary cytokines, enhanced ROS levels and oxidized by-products, increased pulmonary edema and cell death. In a two-hit model of LPS and mechanical ventilation (MV), DJ-1 deficient mice displayed enhanced susceptibility to inflammation and lung injury. Collectively, these results identify DJ-1 as a negative regulator of ROS and inflammation, and suggest its expression protects from sterile lung injury driven by high oxidative stress.


Subject(s)
Acute Lung Injury , Protein Deglycase DJ-1 , Ventilator-Induced Lung Injury , Acute Lung Injury/genetics , Animals , Cell Line , Humans , Lipopolysaccharides , Lung , Mice , Mice, Inbred C57BL , Protein Deglycase DJ-1/genetics , Ventilator-Induced Lung Injury/genetics , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...