Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 10(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889133

ABSTRACT

Rubber is a natural product, the main car tire component. Due to the characteristics acquired by this material after its vulcanization process, its degradation under natural conditions requires very long times, causing several environmental problems. In the present work, the existence of a bacterial consortium isolated from a discarded tire found within the Socabaya River with the ability to degrade shredded tire rubber without any chemical pretreatment is explored. Taking into consideration the complex chemical composition of a rubber tire and the described benefits of the use of pretreatments, the study is developed as a preliminary analysis. The augmentative growth technique was used, and the level of degradation was quantified as a percentage through the analysis of microbial respiration. Schiff's test and the use of comparative photographs of scanning electron microscopy (SEM) were also used. The consortium using next generation genetic sequencing was analyzed. A 4.94% degradation point was obtained after 20 days of experimentation, and it was found that the consortium was mostly made up with Delftia tsuruhatensis with 69.12% of the total genetic readings of the consortium and the existence of 15% of unidentified microbial strains at the genre level. The role played by the organisms in the degradation process is unknown. However, the positive results in the tests carried out show that the consortium had action on the shredded tire, showing a mineralization process.

2.
Water Environ Res ; 94(4): e10708, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35365970

ABSTRACT

Membrane fouling is caused by foulant deposition or adsorption through physical or chemical interactions on the membrane surface, causing the reduction of flux through the membrane. The main drawbacks of chemical agents used for cleaning are cost, damage caused on the membrane, and waste stream making the process unattractive. Alternative, methods such as ultrasound, enzymatic process, and osmotic backwashing were explored for membrane cleaning. Among all mentioned methods, micronanobubbles have been reported as a promising and emergent method for membrane surface cleaning; unfortunately, the information is limited, but preliminary studies have shown it as an efficient, cheap, and environmentally friendly technique. Other methods like electrically and vibratory-enhanced membrane cleaning also could be interesting but currently are unexplored and information is limited. PRACTITIONER POINTS: Chemical cleaning is an efficient option; however, from an environmental point of view, it is not attractive, and high concentrations could cause damage to the membrane. Micronanobubbles are an emergent and suitable technology for membrane and surface cleaning. Membrane modification and functionalization avoid membrane fast fouling, and the cleaning process is easier, but the manufacture cost could be expensive.

SELECTION OF CITATIONS
SEARCH DETAIL