Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522850

ABSTRACT

Crossandra (Crossandra infundubuliformis (L.) Nees.) is one of the main floriculture crops in Karnataka. In 2020 (March-June), a characteristic leaf spot disease of unknown etiology with an incidence ranging from 10-12% (~30 ha area evaluated) was observed in Southern Karnataka (Mysore, Mandya). Initially, the symptoms developed as small specks (3 to 8 mm), characterized by circular to irregular shapes in the beginning and coalesced to form larger lesions. Ten samples were collected in polybags followed by the isolation of associated fungal pathogen on potato dextrose agar (PDA) medium amended with Chloramphenicol (60 mg/L). Briefly, small pieces of infected leaves were cut into small pieces and surface sterilized with 2% sodium hypochlorite (NaOCl) solution, rinsed three times with sterile distilled water (SDW), blot dried, then inoculated onto PDA medium, and incubated at room temperature (27 ± 2°C) for 3 - 5 days. Fungal colonies developed from the segments and were subcultured through hyphal tipping to fresh PDA plates to get pure cultures. A total of 12 pure cultures were obtained. Mycelia were initially white and eventually turned gray. The conidia were black, single-celled, smooth, spherical to subspherical, 9 to 18 µm in diameter (n=50), and borne singly on a hyaline vesicle at the tip of each conidiophore. The identity was initially established based on the cultural features and conidial morphology as Nigrospora sp. (Deepika et al., 2021). To confirm the identity of fungal isolates based on molecular sequence analysis was performed for two representative isolates (CIT1 & CIT2). ITS-rDNA, tub2 & EF-1α gene were amplified using primers ITS1/ITS4, T1/T22 & EF1-728F/986R (White et al., 1990; O'Donnel and Cigelnik, 1997; Carbone and Kohn, 1999), then purified and sequenced. The BLASTn analysis of ITS, tub2 and EF-1α gene showed 99-100% similarity with reference sequences from the GenBank database to Nigrospora sphaerica (ITS: 520bp, KX985935 - LC7312; MH854878 - CBS:166.26; tub2: 357bp, MZ032030 - WYR007, 350bp, KY019606 - LC7298, KY019522 - LC4278, KY019520 - LC4274; EF-1α: 472bp, KY019397 - LC7294, KY019331 - LC4241; MN864137 - HN-BH-3) and the sequences were deposited in GenBank (ITS: OL672271 & OL672272; tub2: OL782120 & OL782121; EF-1α: ON051604 & ON051605) (Wang et al., 2017). The associated fungal pathogen was identified as N. sphaerica (Sacc.) Mason (Chen et al. 2018; Deepika et al., 2021) based on the cultural, morphological, microscopic, and molecular characteristics. Further, pathogenicity tests were conducted on healthy plants (Crossandra cv. Arka; n=30) grown under greenhouse conditions (28±2 °C; 80% RH). Inoculations were made with conidial suspension (18 days old N. sphaerica isolate CIT1, 106 conidia/ml) prepared in SDW, and healthy plants sprayed with SDW (n=10) served as controls. All the plants were covered with polyethylene bags for 24-48 hr and observations were made at regular intervals. Typical necrotic lesions developed on 16 plants after 12 days after inoculation but no symptoms were observed on the control plants. The associated pathogen was re-isolated from diseased leaves and confirmed their identity based on morphology and cultural characteristics. Earlier, N. sphaerica was associated with various tree species as an endophyte, and recently several reports have appeared to cause disease on various crop plants (Deepika et al., 2021). However, there are no previous reports on the association of N. sphaerica causing leaf spot disease on C. infundibuliformis from India. Early diagnosis of this leaf spot disease will help the floriculturist adopt suitable management practices to avoid significant economic loss.

2.
Plant Dis ; 98(9): 1281, 2014 Sep.
Article in English | MEDLINE | ID: mdl-30699654

ABSTRACT

Lemon (Citrus lemon (L.) Burm. f.) is an important fruit crop cultivated worldwide, and is grown practically in every state in India (3). During a survey conducted in 2013, a few small trees in a lemon orchard near Mysore city (Karnataka) (12°19.629' N, 76°31.892' E) were found affected by dieback disease. Approximately 10 to 20% of trees were affected as young shoots and branches showed progressive death from the apical region downward. Different samples were collected and diagnosed via morphological methods. The fungus was consistently isolated from the infected branches when they were surface sanitized with 1.5% NaOCl and plated on potato dextrose agar (PDA). Plates were incubated at 26 ± 2°C for 7 days at 12/12 h alternating light and dark period. Fungal colonies were whitish with pale brown stripes having an uneven margin and pycnidia were fully embedded in the culture plate. No sexual state was observed. Pycnidia were globose, dark, 158 to 320 µm in diameter, and scattered throughout the mycelial growth. Both alpha and beta conidia were present within pycnidia. Alpha conidia were single celled (5.3 to 8.7 × 2.28 to 3.96 µm) (n = 50), bigittulate, hyaline, with one end blunt and other truncated. Beta conidia (24.8 to 29.49 × 0.9 to 1.4 µm) (n = 50) were single celled, filiform, with one end rounded and the other acute and curved. Based on the morphological and cultural features, the fungal pathogen was identified as Phomopsis citri H.S. Fawc. Pathogenicity test was conducted on nine healthy 2-year-old lemon plants via foliar application of a conidial suspension (3 × 106); plants were covered with polythene bags for 6 days and maintained in the greenhouse. Sterile distilled water inoculated plants (in triplicate) served as controls and were symptomless. Development of dieback symptoms was observed after 25 days post inoculation and the fungal pathogen was re-isolated from the inoculated lemon trees. The internal transcribed spacer region (ITS) of the isolated fungal genomic DNA was amplified using universal-primer pair ITS1/ITS4 and sequenced to confirm the species-level diagnosis (4). The sequence data of the 558-bp amplicon was deposited in GenBank (Accession No. KJ477016.1) and nBLAST search showed 99% homology with Diaporthe citri (teleomorph) strain 199.39 (KC343051.1). P. citri is known for its association with melanose disease of citrus in India, the United States, and abroad. P. citri also causes stem end rot of citrus, which leads to yield loss and reduction in fruit quality (1,2). Dieback disease is of serious concern for lemon growers as it affects the overall productivity level of the tree. To the best of our knowledge, this is the first report of P. citri causing dieback of lemon in India. References: (1) I. H. Fischer et al. Sci. Agric. (Piracicaba). 66:210, 2009. (2) S. N. Mondal et al. Plant Dis. 91:387, 2007. (3) S. P. Raychaudhuri. Proc. Int. Soc. Citriculture 1:461, 1981. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.

SELECTION OF CITATIONS
SEARCH DETAIL
...