Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 10(10)2020 09 24.
Article in English | MEDLINE | ID: mdl-32987705

ABSTRACT

Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.


Subject(s)
Fibrosis/genetics , Interleukin-17/genetics , Peritoneal Dialysis , Renal Insufficiency, Chronic/genetics , Dialysis Solutions/chemistry , Fibrosis/pathology , Humans , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Peritoneum/metabolism , Peritoneum/pathology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/therapy
2.
Adv Exp Med Biol ; 1227: 81-94, 2020.
Article in English | MEDLINE | ID: mdl-32072500

ABSTRACT

Gremlin is a member of the TGF-ß superfamily that can act as a BMP antagonist, and recently, has been described as a ligand of the vascular endothelial growth factor receptor 2 (VEGFR2). Gremlin shares properties with the Notch signaling pathway. Both participate in embryonic development and are reactivated in pathological conditions. Gremlin is emerging as a potential therapeutic target and biomarker of renal diseases. Here we review the role of the Gremlin-VEGFR2 axis in renal damage and downstream signaling mechanisms, such as Notch pathway.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Humans , Kidney/metabolism , Kidney/pathology , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Front Pharmacol ; 10: 1315, 2019.
Article in English | MEDLINE | ID: mdl-31780938

ABSTRACT

Epigenetic mechanisms, especially DNA methylation and histone modifications, are dynamic processes that regulate the gene expression transcriptional program in normal and diseased states. The bromodomain and extraterminal (BET) protein family (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers that, via bromodomains, regulate gene transcription by binding to acetylated lysine residues on histones and master transcriptional factors. Experimental data have demonstrated the involvement of some BET proteins in many pathological conditions, including tumor development, infections, autoimmunity, and inflammation. Selective bromodomain inhibitors are epigenetic drugs that block the interaction between BET proteins and acetylated proteins, thus exerting beneficial effects. Recent data have described the beneficial effect of BET inhibition on experimental renal diseases. Emerging evidence underscores the importance of environmental modifications in the origin of pathological features in chronic kidney diseases (CKD). Several cellular processes such as oxidation, metabolic disorders, cytokines, inflammation, or accumulated uremic toxins may induce epigenetic modifications that regulate key processes involved in renal damage and in other pathological conditions observed in CKD patients. Here, we review how targeting bromodomains in BET proteins may regulate essential processes involved in renal diseases and in associated complications found in CKD patients, such as cardiovascular damage, highlighting the potential of epigenetic therapeutic strategies against BET proteins for CKD treatment and associated risks.

SELECTION OF CITATIONS
SEARCH DETAIL
...