Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; : e202400410, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950125

ABSTRACT

Rh(III) and Ru(II) complexes, [RhCl2(κ4-N2N'P-L)][SbF6] (1) and [RuCl2(κ4-N2N'P-L)] (2), were synthesised using the tetradentate ligand L (L = N,N-bis[(pyridin-2-yl)methyl]-[2-(diphenylphosphino)phenyl]methanamine). The chloride ligand trans to pyridine can be selectively abstracted by AgSbF6, with the ruthenium complex (2) reacting more readily at room temperature compared to the rhodium complex (1) which requires elevated temperatures. Rhodium complexes avoid the second chloride abstraction, whereas ruthenium complexes can form the chiral bisacetonitrile complex [Ru(κ4-N2N'P-L)(NCMe)2][SbF6]2 (5) upon corresponding treatment with AgSbF6. The complex [RhCl2(κ4-N2N'P-L)][SbF6] (1) has also been used to synthesise polymetallic species, such as the tetrametallic complex [{RhCl2(κ4-N2N'P-L)}2(µ-Ag)2][SbF6]4 (6) which was formed with complete diastereoselectivity and chiral molecular self-recognition. In addition, a stable bimetallic mixed-valence complex [{Rh(κ4-N2N'P-L)}{Rh(COD)}(µ-Cl)2][SbF6]2 (7) (COD = cyclooctadiene) was synthesised. These results highlight the significant differences in chloride lability between Rh3+ and Ru2+ complexes and demonstrate the potential for complexes to act as catalyst precursors and ligands in further chemistry applications.

2.
Chemistry ; 30(10): e202303935, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38031971

ABSTRACT

The unique dynamic configuration of an enantioselective chiral-at-metal catalyst based on Rh(III) and a non-chiral tetradentate ligand is described and resolved. At room temperature, the catalyst undergoes a dynamic configuration process leading to the formation of two interconvertible metal-stereoisomers, remarkably without racemization. Density functional theory (DFT) calculations indicate that this metal-isomerization proceeds via a concerted transition state, which features a trigonal bipyramidal geometry stabilized by the tetradentate ligand. Furthermore, the resolved enantiopure complex shows high catalytic enantioinduction in the Friedel-Crafts reaction, achieving enantiomeric ratios as high as 99 : 1.

3.
RSC Adv ; 12(53): 34704-34714, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545596

ABSTRACT

An improved synthesis of the racemic rhodium compound [RhCl2(κ4 C,N,N',P-L1)] (1) containing an achiral tripodal tetradentate ligand is reported. Their derived solvate complexes [Rh(κ4 C,N,N',P-L1)(Solv)2][SbF6]2 (Solv = NCMe, 2; H2O, 3) are resolved into their two enantiomers. Complexes 2 and 3 catalyze the Diels-Alder (DA) reaction between methacrolein and cyclopentadiene and the 1,3-dipolar cycloaddition reaction between methacrolein and the nitrone N-benzylidenphenylamine-N-oxide. When enantiopure (A Rh,R N)-2 was employed as the catalyst, enantiomeric ratios >99/1, in the R at C2 adduct, and up to 94/6, in the 3,5-endo isomer, were achieved in the DA reaction and in the 1,3-dipolar cycloaddition reaction, respectively. A plausible catalytic cycle that accounts for the origin of the observed enantioselectivity is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...