Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Atten Percept Psychophys ; 82(2): 775-798, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32048181

ABSTRACT

Any object-oriented action requires that the object be first brought into the attentional foreground, often through visual search. Outside the laboratory, this would always take place in the presence of a scene representation acquired from ongoing visual exploration. The interaction of scene memory with visual search is still not completely understood. Feature integration theory (FIT) has shaped both research on visual search, emphasizing the scaling of search times with set size when searches entail feature conjunctions, and research on visual working memory through the change detection paradigm. Despite its neural motivation, there is no consistently neural process account of FIT in both its dimensions. We propose such an account that integrates (1) visual exploration and the building of scene memory, (2) the attentional detection of visual transients and the extraction of search cues, and (3) visual search itself. The model uses dynamic field theory in which networks of neural dynamic populations supporting stable activation states are coupled to generate sequences of processing steps. The neural architecture accounts for basic findings in visual search and proposes a concrete mechanism for the integration of working memory into the search process. In a behavioral experiment, we address the long-standing question of whether both the overall speed and the efficiency of visual search can be improved by scene memory. We find both effects and provide model fits of the behavioral results. In a second experiment, we show that the increase in efficiency is fragile, and trace that fragility to the resetting of spatial working memory.


Subject(s)
Inhibition, Psychological , Memory, Short-Term/physiology , Visual Perception/physiology , Adolescent , Adult , Attention/physiology , Cues , Female , Humans , Male , Models, Neurological , Photic Stimulation , Young Adult
2.
Front Neurorobot ; 13: 95, 2019.
Article in English | MEDLINE | ID: mdl-31803041

ABSTRACT

Neurally inspired robotics already has a long history that includes reactive systems emulating reflexes, neural oscillators to generate movement patterns, and neural networks as trainable filters for high-dimensional sensory information. Neural inspiration has been less successful at the level of cognition. Decision-making, planning, building and using memories, for instance, are more often addressed in terms of computational algorithms than through neural process models. To move neural process models beyond reactive behavior toward cognition, the capacity to autonomously generate sequences of processing steps is critical. We review a potential solution to this problem that is based on strongly recurrent neural networks described as neural dynamic systems. Their stable states perform elementary motor or cognitive functions while coupled to sensory inputs. The state of the neural dynamics transitions to a new motor or cognitive function when a previously stable neural state becomes unstable. Only when a neural robotic system is capable of acting autonomously does it become a useful to a human user. We demonstrate how a neural dynamic architecture that supports autonomous sequence generation can engage in such interaction. A human user presents colored objects to the robot in a particular order, thus defining a serial order of color concepts. The user then exposes the system to a visual scene that contains the colored objects in a new spatial arrangement. The robot autonomously builds a scene representation by sequentially bringing objects into the attentional foreground. Scene memory updates if the scene changes. The robot performs visual search and then reaches for the objects in the instructed serial order. In doing so, the robot generalizes across time and space, is capable of waiting when an element is missing, and updates its action plans online when the scene changes. The entire flow of behavior emerges from a time-continuous neural dynamics without any controlling or supervisory algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...