Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 356: 127332, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35589042

ABSTRACT

This work studied the co-pyrolysis of wheat straw (WS) and polyethylene (PE) via thermogravimetric experiments from room temperature to 1000 °C at various heating rates (10, 20, and 30 °C/min). Thermal behavior revealed that the maximum decomposition of WS, PE, and their blend occurred in three temperature ranges, viz. 250 - 496, 200 - 486, and 200 - 501 °C. Kinetic parameters were determined using model-free isoconversional methods. Activation energy from KAS (163.56, 220.26 and 196.78 kJ/mol for WS, PE, and blend), FWO (165.97, 222.05, 198.86 kJ/mol for WS, PE, and blend), and Starink (163.45, 220.05, 196.46 kJ/mol for WS, PE, and blend) method was estimated. From among various solid-state kinetic models, first-order reaction kinetics and one and two-dimensional diffusion models dominated co-pyrolysis of WS and PE. Thermodynamic parameters confirmed the feasibility of co-pyrolysis of WS and PE while differential thermal analysis signified that endothermic and exothermic reactions occur simultaneously.


Subject(s)
Pyrolysis , Triticum , Biomass , Kinetics , Plastics , Polyethylene , Thermodynamics , Thermogravimetry
2.
Bioresour Technol ; 347: 126440, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34852283

ABSTRACT

Detailed analysis of thermo-kinetics, reaction mechanism, and estimation of thermodynamic parameters are imperative for the design of reactor systems in thermochemical conversion processes. Present investigation was aimed at exploring the pyrolysis potential of pigeon pea stalk (PPS) by thermogravimetric experiments at 10, 20, and 30 °C/min heating rates. Maximum devolatilization of PPS was found to take place below 480 °C. The average activation energy for PPS pyrolysis was found to be 95.97, 100.74, 96.24, and 96.64 kJ/mol by Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Starink, and Friedman method, respectively. Statistical analysis by one way analysis of variance method by employing Tukey test revealed that the difference in activation energy estimated from different methods was insignificant. Thermodynamic parameters (ΔH, ΔS, and ΔG) together with reaction mechanisms were also evaluated. Difference in the activation energy and enthalpy was found to be less than 5 kJ/mol. R2 and R3 models were found best fitted with experimental PPS pyrolysis data.


Subject(s)
Cajanus , Pyrolysis , Biomass , Kinetics , Thermodynamics , Thermogravimetry
3.
J Environ Manage ; 301: 113854, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34607141

ABSTRACT

Insights into thermal degradation behaviour, kinetics, reaction mechanism, possible synergism, and thermodynamic analysis of co-pyrolysis of carbonaceous materials are crucial for efficient design of co-pyrolysis reactor systems. Present study deals with comprehensive kinetics and thermodynamic investigation of co-pyrolysis of petroleum coke (PC) and banana leaves biomass (BLB) for realizing the co-pyrolysis potential. Thermogravimetric non-isothermal studies have been performed at 10, 20, and 30 °C/min heating rates. Synergistic effect between PC and BLB was determined by Devolatilization index (Di) and mass loss method. Kinetic parameters were estimated using seven model-free methods. Standard activation energy for PC + BLB blend from FWO, KAS, Starink, and Vyazovkin methods was ≈165 kJ/mol and that from Friedman and Vyazovkin advanced isoconversional methods was ≈171 kJ/mol. The frequency factor calculated for the blend from Kissinger method was found to be in the range of 106-1016s-1. Devolatilization index (Di) showed synergistic effect of blending. The data pertaining to co-pyrolysis was found to fit well with R2 (second order) and D3 (three dimensional) from Z(α) master plot. Thermodynamic parameters, viz. ΔH ≈ 163 kJ/mol and ΔG ≈ 151 kJ/mol were calculated to determine the feasibility and reactivity of the co-pyrolysis process. The results are expected to be useful in the design of petcoke and banana leaves biomass co-pyrolysis systems.


Subject(s)
Coke , Musa , Petroleum , Biomass , Kinetics , Plant Leaves , Pyrolysis , Thermodynamics , Thermogravimetry
4.
Sci Total Environ ; 783: 147004, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34088159

ABSTRACT

The knowledge on thermo-kinetics, synergistic effect, and reaction mechanism of pyrolysis/co-pyrolysis of biomass with plastics is crucial for designing efficient reactor system and subsequently the pyrolysis/co-pyrolysis process. The present work explores thermal response, kinetics, reaction mechanism and thermodynamic analysis of pyrolysis and co-pyrolysis of individual corn cob (CC) and polyethylene (PE), and their blend in the ratio of 3:1 (w/w). Thermogravimetric analysis (TGA) data was obtained under inert atmosphere at various heating rates of 10, 20, and 30 °C/min and synergistic effect in the co-pyrolysis of CC and PE is discussed. The obtained TGA data was processed using various model-free isoconversional methods like KAS, FWO, Friedman, Starink, and Vyazovkin for determination of kinetics of pyrolysis/co-pyrolysis process of CC and PE. Average activation energy for CC pyrolysis was estimated to be 240 ± 51.25 kJ/mol, 240 ± 51.51 kJ/mol, 237 ± 49.67 kJ/mol, and 245 ± 52.10 kJ/mol according to KAS, Starink, FWO, and Vyazovkin models, respectively. Statistical analysis showed that the variation in reported values of activation energy was not significantly different (p = 0.994). Similar statistically insignificant difference was also observed for pyrolysis of PE and co-pyrolysis of CC and PE. Results showed that co-pyrolysis (CC + PE) requires 10% less activation energy than pyrolysis of CC alone. For the co-pyrolysis process, the extent of synergistic effect was discussed by difference in mass loss (ΔW). Investigation also revealed that residue left for co-pyrolysis of CC and PE is 50% less than pyrolysis of CC alone showing synergistic effect during co-pyrolysis. Thermodynamic parameters were calculated to illustrate complex mechanism of the process. Third order reaction, 3D diffusion Jander, and Ginstling-Brounshtein (D4) models were found to be best fitted for CC pyrolysis, PE pyrolysis, and co-pyrolysis, respectively. Results obtained are expected to be useful in the design of corn cob and waste polyethylene co-pyrolysis systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...