Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Analyst ; 148(22): 5588-5596, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37872817

ABSTRACT

Intravenous fluids are being widely used in patients of all ages for preventing or treating dehydration in the intensive care units, surgeries in the operation rooms, or administering chemotherapeutic drugs at hospitals. Dextrose, Ringer, and NaCl solutions are widely received as intravenous fluids by hospitalized patients. Despite their widespread administration for over 100 years, studies on their influences on different cell types have been very limited. Increasing evidence suggests that treatment outcomes might be altered by the choice of the administered intravenous fluids. In this study, we investigated the influences of intravenous fluids on human endothelial (HUVEC) and monocyte (U937) cell lines using the magnetic levitation technique. Our magnetic levitation platform provides label-free manipulation of single cells without altering their phenotypic or genetic properties. It allows for monitoring and quantifying behavior of single cells by measuring their levitation heights, deformation indices, and areas. Our results indicate that HUVEC and U937 cell lines respond differently to different intravenous fluids. Dextrose solution decreased the viability of both cell lines while increasing the heterogeneity of areas, deformation, and levitation heights of HUVEC cells. We strongly believe that improved outcomes can be achieved when the influences of intravenous fluids on different cell types are revealed using robust, label-free, and efficient methods.


Subject(s)
Glucose , Monocytes , Humans , U937 Cells , Cell Line , Magnetic Phenomena
2.
Biomed Microdevices ; 25(2): 10, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36913137

ABSTRACT

The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.


Subject(s)
COVID-19 , Microfluidics , Humans , Microfluidics/methods , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19/diagnosis , Drug Delivery Systems , Pharmaceutical Preparations , COVID-19 Testing
3.
ACS Omega ; 8(4): 3630-3649, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743071

ABSTRACT

Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.

4.
Talanta ; 254: 124190, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36521325

ABSTRACT

Rapid point-of-care tests for infectious diseases are essential, especially in pandemic conditions. We have developed a point-of-care electromechanical device to detect SARS-CoV-2 viral RNA using the reverse-transcription loop-mediated isothermal amplification (RT-LAMP) principle. The developed device can detect SARS-CoV-2 viral RNA down to 103 copies/mL and from a low amount of sample volumes (2 µL) in less than an hour of standalone operation without the need for professional labor and equipment. Integrated Peltier elements in the device keep the sample at a constant temperature, and an integrated camera allows automated monitoring of LAMP reaction in a stirring sample by using colorimetric analysis of unfocused sample images in the hue/saturation/value color space. This palm-fitting, portable and low-cost device does not require a fully focused sample image for analysis, and the operation could be stopped automatically through image analysis when the positive test results are obtained. Hence, viral infections can be detected with the portable device produced without the need for long, expensive, and labor-intensive tests and equipment, which can make the viral tests disseminated at the point-of-care.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , Sensitivity and Specificity
5.
ACS Omega ; 7(29): 25837-25843, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910133

ABSTRACT

Chronic kidney disease (CKD) is a high-cost disease that affects approximately one in ten people globally, progresses rapidly, results in kidney failure or dialysis, and triggers other diseases. Although clinically used serum creatinine tests are used to evaluate kidney functions, these tests are not suitable for frequent and regular control at-home settings that obstruct the regular monitoring of kidney functions, improving CKD management with early intervention. This study introduced a new electromechanical lab-on-a-chip platform for point-of-care detection of serum creatinine levels using colorimetric enzyme-linked immunosorbent assay (ELISA). The platform was composed of a chip containing microreservoirs, a stirring bar coated with creatinine-specific antibodies, and a phone to detect color generated via ELISA protocols to evaluate creatinine levels. An electromechanical system was used to move the stirring bar to different microreservoirs and stir it inside them to capture and detect serum creatinine in the sample. The presented platform allowed automated analysis of creatinine in ∼50 min down to ∼1 and ∼2 mg/dL in phosphate-buffered saline (PBS) and fetal bovine serum (FBS), respectively. Phone camera measurements in hue, saturation, value (HSV) space showed sensitive analysis compared to a benchtop spectrophotometer that could allow low-cost analysis at point-of-care.

6.
Biotechnol Bioeng ; 118(12): 4771-4785, 2021 12.
Article in English | MEDLINE | ID: mdl-34559409

ABSTRACT

Diamagnetic levitation is an emerging technology for remote manipulation of cells in cell and tissue level applications. Low-cost magnetic levitation configurations using permanent magnets are commonly composed of a culture chamber physically sandwiched between two block magnets that limit working volume and applicability. This work describes a single ring magnet-based magnetic levitation system to eliminate physical limitations for biofabrication. Developed configuration utilizes sample culture volume for construct size manipulation and long-term maintenance. Furthermore, our configuration enables convenient transfer of liquid or solid phases during the levitation. Before biofabrication, we first calibrated/ the platform for levitation with polymeric beads, considering the single cell density range of viable cells. By taking advantage of magnetic focusing and cellular self-assembly, millimeter-sized 3D structures were formed and maintained in the system allowing easy and on-site intervention in cell culture with an open operational space. We demonstrated that the levitation protocol could be adapted for levitation of various cell types (i.e., stem cell, adipocyte and cancer cell) representing cells of different densities by modifying the paramagnetic ion concentration that could be also reduced by manipulating the density of the medium. This technique allowed the manipulation and merging of separately formed 3D biological units, as well as the hybrid biofabrication with biopolymers. In conclusion, we believe that this platform will serve as an important tool in broad fields such as bottom-up tissue engineering, drug discovery and developmental biology.


Subject(s)
Cell Culture Techniques, Three Dimensional , Magnets , Tissue Engineering , Animals , Cell Culture Techniques, Three Dimensional/instrumentation , Cell Culture Techniques, Three Dimensional/methods , Cell Line , Equipment Design , Humans , Mice , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Tissue Engineering/instrumentation , Tissue Engineering/methods
7.
ACS Sens ; 6(6): 2191-2201, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34124887

ABSTRACT

In clinical practice, a variety of diagnostic applications require the identification of target cells. Density has been used as a physical marker to distinguish cell populations since metabolic activities could alter the cell densities. Magnetic levitation offers great promise for separating cells at the single cell level within heterogeneous populations with respect to cell densities. Traditional magnetic levitation platforms need bulky and precise optical microscopes to visualize levitated cells. Moreover, the evaluation process of cell densities is cumbersome, which also requires trained personnel for operation. In this work, we introduce a device (HologLev) as a fusion of the magnetic levitation principle and lensless digital inline holographic microscopy (LDIHM). LDIHM provides ease of use by getting rid of bulky and expensive optics. By placing an imaging sensor just beneath the microcapillary channel without any lenses, recorded holograms are processed for determining cell densities through a fully automated digital image processing scheme. The device costs less than $100 and has a compact design that can fit into a pocket. We perform viability tests on the device by levitating three different cell lines (MDA-MB-231, U937, D1 ORL UVA) and comparing them against their dead correspondents. We also tested the differentiation of mouse osteoblastic (7F2) cells by monitoring characteristic variations in their density. Last, the response of MDA-MB-231 cancer cells to a chemotherapy drug was demonstrated in our platform. HologLev provides cost-effective, label-free, fully automated cell analysis in a compact design that could be highly desirable for laboratory and point-of-care testing applications.


Subject(s)
Holography , Microscopy , Animals , Image Processing, Computer-Assisted , Magnetic Phenomena , Magnetics , Mice
8.
Emergent Mater ; 4(1): 143-168, 2021.
Article in English | MEDLINE | ID: mdl-33786415

ABSTRACT

With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.

9.
Biotechnol Bioeng ; 118(3): 1127-1140, 2021 03.
Article in English | MEDLINE | ID: mdl-33205833

ABSTRACT

Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.


Subject(s)
Adipocytes/metabolism , Adipogenesis , Cell Differentiation , Magnetic Fields , Tissue Engineering , A549 Cells , Adipocytes/cytology , Humans , Tissue Scaffolds
10.
Anal Chem ; 92(18): 12556-12563, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32811142

ABSTRACT

Magnetic levitation, which is a magnetic phenomenon of levitating particles suspended in a paramagnetic liquid under a nonuniform magnetic field, is a powerful tool for determining densities and magnetic properties of micro- and nanoparticles. The levitation height of particles in the magnetic field depends on the magnetic susceptibility and density difference between the object and the surrounding liquid. Here, we developed a magnetic susceptibility-based protein detection scheme in a low-cost and miniaturized magnetic levitation setup consisting of two opposing magnets to create a gradient of a magnetic field, a glass capillary channel to retain the sample, and two side mirrors to monitor inside the channel. The method includes the use of polymeric microspheres as mobile assay surfaces and magnetic nanoparticles as labels. The assay was realized by capturing the target protein to the polymer microspheres. Then, magnetic nanoparticles were attached onto the resulting microsphere-protein complex, creating a significant difference in the magnetic properties of polymer microspheres compared to those without protein. The change in the magnetic properties caused a change in the levitation height of the microspheres. The levitation heights and their distribution were then correlated to the amount of target proteins. The method enabled a detection limit of ∼110 fg/mL biotinylated bovine serum albumin in serum. With the sandwich immunoassay developed for mouse immunoglobulin G, detection limits of 1.5 ng/mL and >10 ng/mL were achieved in buffer and serum, respectively. This approach sensed the minute changes in the volume magnetic susceptibility of the microspheres with a resolution of 4.2 × 10-8 per 1 µm levitation height change.


Subject(s)
Immunoglobulin G/blood , Serum Albumin, Bovine/analysis , Animals , Cattle , Magnetic Phenomena , Mice
11.
Adv Exp Med Biol ; 1298: 105-132, 2020.
Article in English | MEDLINE | ID: mdl-32424490

ABSTRACT

Challenging environment of space causes several pivotal alterations in living systems, especially due to microgravity. The possibility of simulating microgravity by ground-based systems provides research opportunities that may lead to the understanding of in vitro biological effects of microgravity by eliminating the challenges inherent to spaceflight experiments. Stem cells are one of the most prominent cell types, due to their self-renewal and differentiation capabilities. Research on stem cells under simulated microgravity has generated many important findings, enlightening the impact of microgravity on molecular and cellular processes of stem cells with varying potencies. Simulation techniques including clinostat, random positioning machine, rotating wall vessel and magnetic levitation-based systems have improved our knowledge on the effects of microgravity on morphology, migration, proliferation and differentiation of stem cells. Clarification of the mechanisms underlying such changes offers exciting potential for various applications such as identification of putative therapeutic targets to modulate stem cell function and stem cell based regenerative medicine.


Subject(s)
Stem Cells , Weightlessness , Cell Culture Techniques , Cell Differentiation , Weightlessness Simulation
12.
Biomicrofluidics ; 14(2): 024113, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32341724

ABSTRACT

Recently, the use of 3D printing technologies has become prevalent in microfluidic applications. Although these technologies enable low-cost, rapid, and easy fabrication of microfluidic devices, fabricated devices suffer from optical opaqueness that inhibits their use for microscopic imaging. This study investigates bonding strategies using polydimethylsiloxane (PDMS) and printer resin as interlayer materials to fabricate high-strength optically transparent 3D-printed microfluidic devices. First, we fabricated microfluidic structures using a stereolithography 3D printer. We placed 3D-printed structures on interlayer materials coated surfaces. Then, we either let these 3D-printed structures rest on the coated slides or transferred them to new glass slides. We achieved bonding between 3D-printed structures and glass substrates with UV exposure for resin and with elevated temperature for PDMS interlayer materials. Bonding strength was investigated for different interlayer material thicknesses. We also analyzed the bright-field and fluorescence imaging capability of microfluidic devices fabricated using different bonding strategies. We achieve up to twofold (9.1 bar) improved bonding strength and comparable fluorescence sensitivity with respect to microfluidic devices fabricated using the traditional plasma activated PDMS-glass bonding method. Although stereolithography 3D printer allows fabrication of enclosed channels having dimensions down to ∼600 µm, monolithic transparent microfluidic channels with 280 × 110 µm2 cross section can be realized using adhesive interlayers. Furthermore, 3D-printed microfluidic chips can be integrated successfully with Protein-G modified substrates using resin interlayers for detection of fluorescent-labeled immunoglobulin down to ∼30 ng/ml. Hence, this strategy can be applied to fabricate high-strength and transparent microfluidic chips for various optical imaging applications including biosensing.

13.
Methods Mol Biol ; 2125: 15-25, 2020.
Article in English | MEDLINE | ID: mdl-31020635

ABSTRACT

Magnetic levitation methodology enables density-based separation of microparticles/cells and sustains cell culture in different media. Levitation process can be accomplished via negative magnetophoresis (diamagnetophoresis), where the applied magnetic force compensates gravitational acceleration and the density of the diamagnetic object (e.g., cell) determines its levitation height. Here we describe a portable, sensitive, and cost-effective technology that uses the principles of magnetic levitation to measure single cell density and cell culture under desired conditions.


Subject(s)
Cell Culture Techniques/methods , Densitometry , Magnetics , Mesenchymal Stem Cells/cytology , Single-Cell Analysis/methods , Weightlessness , Animals , Calibration , Cell Count , Cells, Cultured , Image Processing, Computer-Assisted , Mice , Microfluidics
14.
Analyst ; 144(9): 2942-2953, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30939180

ABSTRACT

Adipocyte hypertrophy and hyperplasia are important parameters in describing abnormalities in adipogenesis that are concomitant to diseases such as obesity, diabetes, anorexia nervosa and osteoporosis. Therefore, technical developments in the detection of adipocytes become an important driving factor in adipogenesis research. Current techniques such as optical microscopy and flow cytometry are available in detection and examination of adipocytes, driving cell- and molecular-based research of adipogenesis. Even though microscopy techniques are common and straightforward, they are restricted in terms of manipulation and separation of the cells. Flow cytometry is an alternative, but mature adipocytes are fragile and cannot withstand the flow process. Other separation methods usually require labeling of the cells or usage of microfluidic platforms that utilize fluids with different densities. Magnetic levitation is a novel label-free technology with the principle of movement of cells towards the lower magnetic field in a paramagnetic medium depending on their individual densities. In this study, we used a magnetic levitation device for density-based single cell detection of differentiated adipogenic cells in heterogeneous populations. Results showed that the magnetic levitation platform was sensitive to changes in the lipid content of mesenchymal stem cells committed to adipogenesis and it could be successfully used to detect the adipogenic differentiation of the cells.


Subject(s)
Adipocytes/cytology , Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/methods , Adipogenesis/physiology , Animals , Cells, Cultured , Lab-On-A-Chip Devices , Magnetic Phenomena , Magnets , Mice , Microfluidic Analytical Techniques/instrumentation , Single-Cell Analysis/instrumentation
15.
Sci Rep ; 8(1): 7239, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740095

ABSTRACT

Magnetic levitation though negative magnetophoresis is a novel technology to simulate weightlessness and has recently found applications in material and biological sciences. Yet little is known about the ability of the magnetic levitation system to facilitate biofabrication of in situ three dimensional (3D) cellular structures. Here, we optimized a magnetic levitation though negative magnetophoresis protocol appropriate for long term levitated cell culture and developed an in situ 3D cellular assembly model with controlled cluster size and cellular pattern under simulated weightlessness. The developed strategy outlines a potential basis for the study of weightlessness on 3D living structures and with the opportunity for real-time imaging that is not possible with current ground-based simulated weightlessness techniques. The low-cost technique presented here may offer a wide range of biomedical applications in several research fields, including mechanobiology, drug discovery and developmental biology.

16.
Article in English | MEDLINE | ID: mdl-30619842

ABSTRACT

Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.

17.
Proc Natl Acad Sci U S A ; 112(28): E3661-8, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124131

ABSTRACT

Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.


Subject(s)
Magnetics , Single-Cell Analysis , Anti-Infective Agents/pharmacology , Bacteria/cytology , Bacteria/drug effects , Cell Line, Tumor , Culture Media , Erythrocytes/cytology , Humans , Leukocytes/cytology , Models, Theoretical , Yeasts/cytology , Yeasts/drug effects
18.
N Biotechnol ; 32(5): 433-40, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-25817550

ABSTRACT

Magnetic micro- and nanoparticles ('magnetic beads') have been used to advantage in many microfluidic devices for sensitive antigen (Ag) detection. Today, assays that use as read-out of the signal the number count of immobilized beads on a surface for quantification of a sample's analyte concentration have been among the most sensitive and have allowed protein detection lower than the fgmL(-1) concentration range. Recently, we have proposed in this category a magnetic bead surface coverage assay (Tekin et al., 2013 [1]), in which 'large' (2.8µm) antibody (Ab)-functionalized magnetic beads captured their Ag from a serum and these Ag-carrying beads were subsequently exposed to a surface pattern of fixed 'small' (1.0µm) Ab-coated magnetic beads. When the system was exposed to a magnetic induction field, the magnet dipole attractive interactions between the two bead types were used as a handle to approach both bead surfaces and assist with Ag-Ab immunocomplex formation, while unspecific binding (in absence of an Ag) of a large bead was reduced by exploiting viscous drag flow. The dose-response curve of this type of assay had two remarkable features: (i) its ability to detect an output signal (i.e. bead number count) for very low Ag concentrations, and (ii) an output signal of the assay that was non-linear with respect to Ag concentration. We explain here the observed dose-response curves and show that the type of interactions and the concept of our assay are in favour of detecting the lowest analyte concentrations (where typically either zero or one Ag is carried per large bead), while higher concentrations are less efficiently detected. We propose a random walk process for the Ag-carrying bead over the magnetic landscape of small beads and this model description explains the enhanced overall capture probability of this assay and its particular non-linear dose response curves.


Subject(s)
Magnetics , Microfluidics/methods , Antigen-Antibody Reactions , Limit of Detection , Microfluidic Analytical Techniques , Proteins/analysis , Surface Properties
19.
Article in English | MEDLINE | ID: mdl-29657866

ABSTRACT

In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing. The samples are illuminated by a nearly coherent illumination system, where the hologram shadows are projected into a complementary metal-oxide semiconductor-based imaging sensor. To increase the resolution, a multi-frame pixel resolution approach is employed to produce a single holographic image from multiple frame observations of the scene, with small planar displacements. Displacements are resolved by a hybrid approach: (i) alignment of the LR images by a fast feature-based registration method, and (ii) fine adjustment of the sub-pixel information using a continuous optimization approach designed to find the global optimum solution. Numerical method for phase-retrieval is applied to decode the signal and reconstruct the morphological details of the analyzed sample. The presented approach was evaluated with various biological samples including sperm and platelets, whose dimensions are in the order of a few microns. The obtained results demonstrate a spatial resolution of 1.55 µm on a field-of-view of ≈30 mm2.

20.
Biotechnol Adv ; 33(1): 178-190, 2015.
Article in English | MEDLINE | ID: mdl-25450190

ABSTRACT

The control of hepatitis B virus (HBV) infection is a challenging task, specifically in developing countries there is limited access to diagnostics and antiviral treatment mainly due to high costs and insufficient healthcare infrastructure. Although the current diagnostic technologies can reliably detect HBV, they are relatively laborious, impractical and require expensive resources that are not suitable for resource-limited settings. Advances in micro/nanotechnology are pioneering the development of new generation methodologies in diagnosis and screening of HBV. Owing to combination of nanomaterials (metal/inorganic nanoparticles, carbon nanotubes, etc.) with microfabrication technologies, utilization of miniaturized sensors detecting HBV and other viruses from ultra-low volume of blood, serum and plasma is realized. The state-of-the-art microfluidic devices with integrated nanotechnologies potentially allow for inexpensive HBV screening at low cost. This review aims to highlight recent advances in nanotechnology and microfabrication processes that are employed for developing point-of-care (POC) HBV assays.


Subject(s)
Hepatitis B/therapy , Microtechnology/methods , Nanotechnology/methods , Biocompatible Materials/chemistry , Developing Countries/economics , Hepatitis B/diagnosis , Hepatitis B/economics , Hepatitis B virus/growth & development , Hepatitis B virus/isolation & purification , Humans , Lab-On-A-Chip Devices , Nanotechnology/economics , Prevalence , Public Health/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...