Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0302272, 2024.
Article in English | MEDLINE | ID: mdl-38900753

ABSTRACT

Simultaneous occurrences of heat and drought stresses have a detrimental effect on growth, development and yield of maize. Heat and drought is expected to worsen maize yield losses under climate change. Selecting CDHS tolerant maize hybrids creates great opportunity for sustainable maize improvement in the tropics. The objective of current investigation was to dissect the genetic basis of CDHS tolerance in tropical maize and to determine performance of single cross hybrids under CDHS. Ninety six single-cross hybrids resulted from crossing 12 tassel blast tolerant and 12 tassel blast susceptible lines along with two Striga resistant commercial hybrids, a heat tolerant and a heat susceptible check hybrids were evaluated under FIRR, MDRTS and CDHS using 25x4 alpha lattice design with two replications. The results showed significant genetic variation for FIRR, MDRTS and CDHS tolerance among maize hybrids. The majority of single crosses that showed improved grain yield over their respective standard checks under MDRTS also exhibited improved grain yield over the same checks under CHDS, indicating development of CHDS tolerance hybrids. Significant and positive genotypic and phenotypic correlation of grain yield under MDRTS and CDHS implicated common genetic mechanisms controlling yield under MDRTS and CDHS. Stress tolerance indices YI, GMP, MP, HM and STI were identified as best selecting indices under both stresses. GCA variances were larger than SCA variances in each testing environment for most studied traits indicating the impotence of additive gene action than non-additive gene action to control these traits. Majority of stress indices and SCA effects demonstrated that hybrids HB18, HB41, HB91 and HB95 were high yielder under MDRTS and CDHS. Hybrids HB41, HB91 and HB95 and their parents' scored minimum tassel blast. Parents 19 and 7 were well general combiner for grain yield and early maturity under MDRTS and CDHS indicting their valuable source of genes for hybridization. The current findings revealed that CDHS tolerance hybrids can reduce expected yield losses and maintain maize productivity in CDHS prone areas. Promising hybrids should be tested further under various drought and CHDS for commercialization.


Subject(s)
Droughts , Zea mays , Zea mays/genetics , Zea mays/physiology , Zea mays/growth & development , Heat-Shock Response/genetics , Tropical Climate , Genotype , Plant Breeding/methods , Phenotype , Hybridization, Genetic , Genetic Variation
2.
Sci Rep ; 14(1): 9151, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644368

ABSTRACT

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Plant Breeding/methods , Africa, Southern , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Africa, Eastern , Genotype , Crosses, Genetic , Inbreeding , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Front Plant Sci ; 14: 1321308, 2023.
Article in English | MEDLINE | ID: mdl-38293626

ABSTRACT

Genetic gain estimation in a breeding program provides an opportunity to monitor breeding efficiency and genetic progress over a specific period. The present study was conducted to (i) assess the genetic gains in grain yield of the early maturing maize hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) Southern African breeding program during the period 2000-2018 and (ii) identify key agronomic traits contributing to the yield gains under various management conditions. Seventy-two early maturing hybrids developed by CIMMYT and three commercial checks were assessed under stress and non-stress conditions across 68 environments in seven eastern and southern African countries through the regional on-station trials. Genetic gain was estimated as the slope of the regression of grain yield and other traits against the year of first testing of the hybrid in the regional trial. The results showed highly significant (p< 0.01) annual grain yield gains of 118, 63, 46, and 61 kg ha-1 year-1 under optimum, low N, managed drought, and random stress conditions, respectively. The gains in grain yield realized in this study under both stress and non-stress conditions were associated with improvements in certain agronomic traits and resistance to major maize diseases. The findings of this study clearly demonstrate the significant progress made in developing productive and multiple stress-tolerant maize hybrids together with other desirable agronomic attributes in CIMMYT's hybrid breeding program.

4.
Sci Rep ; 12(1): 20110, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418412

ABSTRACT

Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Triticum , Droughts , Edible Grain/genetics
5.
Glob Food Sec ; 32: 100589, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35300043

ABSTRACT

Seed security is vital for food security. Rapid-cycle, climate-adaptive breeding programs and seed systems that deliver new, elite varieties to farmers to replace obsolete ones can greatly improve the productivity of maize-based cropping systems in sub-Saharan Africa (SSA). Despite the importance and benefits of accelerated varietal turnover to climate change adaptation and food security, the rate of maize varietal replacement in SSA is slow. This review outlines the major bottlenecks, drivers, risks, and benefits of active replacement of maize varieties in eastern and southern Africa (ESA) and highlights strategies that are critical to varietal turnover. Although there is an upsurge of new seed companies in ESA and introduction of new varieties with better genetics in the market, some established seed companies continue to sell old (over 15-year-old) varieties. Several recently developed maize hybrids in ESA have shown significant genetic gains under farmers' conditions. Empirical evidence also shows that timely replacement of old products results in better business success as it helps seed companies maintain or improve market share and brand relevance. Therefore, proactive management of product life cycles by seed companies benefits both the farmers and businesses alike, contributing to improved food security and adaptation to the changing climate.

6.
Sci Rep ; 9(1): 13490, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530852

ABSTRACT

Little is known on maize germplasm adapted to the African highland agro-ecologies. In this study, we analyzed high-density genotyping by sequencing (GBS) data of 298 African highland adapted maize inbred lines to (i) assess the extent of genetic purity, genetic relatedness, and population structure, and (ii) identify genomic regions that have undergone selection (selective sweeps) in response to adaptation to highland environments. Nearly 91% of the pairs of inbred lines differed by 30-36% of the scored alleles, but only 32% of the pairs of the inbred lines had relative kinship coefficient <0.050, which suggests the presence of substantial redundancy in allelic composition that may be due to repeated use of fewer genetic backgrounds (source germplasm) during line development. Results from different genetic relatedness and population structure analyses revealed three different groups, which generally agrees with pedigree information and breeding history, but less so by heterotic groups and endosperm modification. We identified 944 single nucleotide polymorphic (SNP) markers that fell within 22 selective sweeps that harbored 265 protein-coding candidate genes of which some of the candidate genes had known functions. Details of the candidate genes with known functions and differences in nucleotide diversity among groups predicted based on multivariate methods have been discussed.


Subject(s)
Genetic Variation , Inbreeding , Plant Breeding , Zea mays/genetics , Chromosome Mapping , Evolution, Molecular , Genetic Markers , Genotype , Phylogeny , Polymorphism, Single Nucleotide , Selection, Genetic , Stress, Physiological
7.
Theor Appl Genet ; 112(4): 752-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16365759

ABSTRACT

Predicting heterosis and F1 performance from the parental generation could largely enhance the efficiency of breeding hybrid or synthetic cultivars. This study was undertaken to determine the relationship between parental distances estimated from phenotypic traits or molecular markers with heterosis, F1 performance and general combining ability (GCA) in Ethiopian mustard (Brassica carinata). Nine inbred lines representing seven different geographic regions of Ethiopia were crossed in half-diallel. The nine parents along with their 36 F1s were evaluated in a replicated field trail at three locations in Ethiopia. Distances among the parents were calculated from 14 phenotypic traits (Euclidean distance, ED) and 182 random amplified polymorphic DNA (RAPD) markers (Jaccard's distances, JD), and correlated with heterosis, F1 performance and GCA sum of parents (GCAsum). The correlation between phenotypic and molecular distances was low (r=0.34, P< or =0.05). Parents with low molecular distance also had low phenotypic distance, but parents with high molecular distance had either high, intermediate or low phenotypic distance. Phenotypic distance was highly significantly correlated with mid-parent heterosis (r=0.53), F1 performance (r=0.61) and GCA (r=0.79) for seed yield. Phenotypic distance was also positively correlated with (1) heterosis, F1 performance and GCA for plant height and seeds plant(-1), (2) heterosis for number of pods plant(-1), and (3) F1 performance for 1,000 seed weight. Molecular distance was correlated with GCAsum (r=0.36, P< or =0.05) but not significantly with heterosis and F1 performance for seed yield. For each parent a mean distance was calculated by averaging the distances to the eight other parents. Likewise, mean heterosis was estimated by averaging the heterosis obtained when each parent is crossed with the other eight. For seed yield, both mean ED and JD were significantly correlated with GCA (r=0.90, P< or =0.01 for ED and r=0.68, P< or =0.05 for JD) and mean heterosis (r=0.79, P< or =0.05 for ED and r=0.77, P< or =0.05 for JD). In conclusion, parental distances estimated from phenotypic traits better predicted heterosis, F1 performance and GCA than distances estimated from RAPD markers.


Subject(s)
Brassica/genetics , Hybrid Vigor/genetics , Phenotype , Quantitative Trait, Heritable , Brassica/growth & development , Crosses, Genetic , Genetic Markers/genetics , Phylogeny , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...