Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 131: 153-158, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30790704

ABSTRACT

The main objective of this study was to evaluate the pharmacokinetics of ritonavir (RTV) nanosuspension in rats in both fed and fasted state in comparison with coarse powder, physical mixture and commercial product (Norvir®). The point to point relation model was generated between the results of in vitro dissolution and in vivo pharmacokinetic studies. The oral RTV nanosuspension was prepared with microfluidization method. Nanosuspension was obtained with 540-550 nm of particle size, 0.1-0.4 of particle size distribution and about -20 mV of zeta potential values. According to in vivo pharmacokinetic studies in rats, Cmax and AUC0-t values in nanosuspension displayed an 8.9- and 12.5-fold increase compared to the coarse powder, and a 1.9- and 2.1-fold increase compared to the commercial product, respectively in the fed group. The point to point relation model showed that the correlation model was significant. It is concluded that nanosuspension is a promising drug delivery system to enhance oral bioavailability of ritonavir.


Subject(s)
HIV Protease Inhibitors/pharmacokinetics , Nanoparticles/administration & dosage , Ritonavir/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Drug Liberation , Fasting/metabolism , HIV Protease Inhibitors/blood , HIV Protease Inhibitors/chemistry , Hypromellose Derivatives/chemistry , Male , Nanoparticles/chemistry , Rats, Wistar , Ritonavir/blood , Ritonavir/chemistry , Sodium Dodecyl Sulfate/chemistry , Suspensions
3.
Eur J Pharm Biopharm ; 72(2): 471-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19462483

ABSTRACT

Salvinorin A is an unregulated potent hallucinogen isolated from the leaves of Salvia divinorum. It is the only known non-nitrogenous kappa-opioid selective agonist, and rivals synthetic lysergic acid diethylamide (LSD) in potency. The objective of this study was to characterize the in vitro transport, in vitro metabolism, and pharmacokinetic properties of Salvinorin A. The transport characteristics of Salvinorin A were assessed using MDCK-MDR1 cell monolayers. The P-glycoprotein (P-gp) affinity status was assessed by the P-gp ATPase assay. In vitro metabolism studies were performed with various specific human CYP450 isoforms and UGT2B7 to assess the metabolic characteristics of Salvinorin A. Cohorts (n = 3) of male Sprague Dawley rats were used to evaluate the pharmacokinetics and brain distribution of Salvinorin A (10 mg/kg, intraperitoneal (i.p.) over a 240-min period. A validated UV-HPLC and LC/MS/MS method was used to quantify the hallucinogen concentrations obtained from the in vitro and in vivo studies, respectively. Salvinorin A displayed a high secretory transport in the MDCK-MDR1 cells (4.07 +/- 1.34 x 10(-)5 cm/s). Salvinorin A also stimulated the P-gp ATPase activity in a concentration (5 and 10 microM)-dependent manner, suggesting that it may be a substrate of (P-gp). A significant decrease in Salvinorin A concentration ranging from 14.7 +/- 0.80% to 31.1 +/- 1.20% was observed after incubation with CYP2D6, CYP1A1, CYP2C18, and CYP2E1, respectively. A significant decrease was also observed after incubation with UGT2B7. These results suggest that Salvinorin A maybe a substrate of UGT2B7, CYP2D6, CYP1A1, CYP2E1, and CYP2C18. The in vivo pharmacokinetic study showed a relatively fast elimination with a half-life (t1/2) of 75 min and a clearance (Cl/F) of 26 L/h/kg. The distribution was extensive (Vd of 47.1 L/kg); however, the brain to plasma ratio was 0.050. Accordingly, the brain half-life was relatively short, 36 min. Salvinorin A is rapidly eliminated after i.p. dosing, in accordance with its fast onset and short duration of action. Further, it appears to be a substrate for various oxidative enzymes and multi-drug resistant protein, P-gp.


Subject(s)
Diterpenes, Clerodane/pharmacokinetics , Hallucinogens/pharmacokinetics , Animals , Cell Line , Chromatography, High Pressure Liquid , Dogs , Half-Life , Male , Rats , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet
4.
J Control Release ; 116(1): 50-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17049402

ABSTRACT

Parallel Artificial Membrane Permeability Assay (PAMPA) is a method to screen drug candidates for membrane permeability. The objective was to characterize the transport of a model weak base, metoprolol, across a three lipid-component PAMPA system (denoted A-PAMPA, for anionic-PAMPA) and challenge ion pairing as a mechanism for metoprolol transport. A-PAMPA was designed to mimic the lipid composition of the enterocyte's plasma membrane and included 1,2-dioleoyl-sn-glycero-3-[phospho-l-serine] (PS18:1) as an anionic lipid-component. Metoprolol flux was measured across A-PAMPA, as well as across three other PAMPA systems. Permeability studies were conducted under various conditions, with varying pH, ionic strength, and presence/absence of competing cations. Permeabilities of mannitol and benzoic acid, as model neutral and anionic solutes, were also measured. PAMPA membrane fluidity was inferred from anisotropy measurements in liposomes. Ion pairing between metoprolol and PS18:1 was assessed via NMR. Metoprolol transport across A-PAMPA was dominated by an ion pair-mediated mechanism (i.e. metoprolol-PS18:1 complex), rather than a membrane fluidity-mediated mechanism. Compared to other PAMPA systems, metoprolol permeability across A-PAMPA and PS18:1 was high. Permeability and anisotropy values suggested PS18:1 selectively facilitated metoprolol transport, while neutral lipid did not. Additional studies supporting ion pairing of metoprolol across A-PAMPA showed that a) metoprolol transport was self-inhibited across A-PAMPA but not across neutral lipid PAMPA; b) competing cations reduced metoprolol permeability across A-PAMPA but not across neutral lipid PAMPA; and c) NMR spectrum of a mixture of metoprolol and PS18:1 showed a broadening of some metoprolol peaks, presumably due to metoprolol interaction with anionic lipid. Metoprolol transport across a three lipid-component PAMPA system that contained anionic lipid was facilitated by apparent ion pairing.


Subject(s)
Adrenergic beta-Antagonists/chemistry , Membranes, Artificial , Metoprolol/chemistry , Algorithms , Anisotropy , Benzoic Acid/chemistry , Ions , Lipids/chemistry , Liposomes , Magnetic Resonance Spectroscopy , Permeability , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry , Quaternary Ammonium Compounds/chemistry
5.
Eur J Pharm Sci ; 29(3-4): 259-68, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16781125

ABSTRACT

The parallel artificial membrane permeability assay (PAMPA) system has promise to rapidly screen drug candidate passive permeability, but has been poorly described in terms of its lipid membrane structure and function. The objective was to investigate the role of PAMPA lipid composition on the permeability of five model compounds. PAMPA was used and employed individual phospholipids that varied in phosphate head group and acyl chain unsaturation. Transport of benzoic acid, taurocholic acid, metoprolol, sucrose, and mannitol was measured. Membrane fluidity was assessed by 1,3-diphenylhexatriene fluorescence anisotropy. Results indicate that compound permeability across PAMPA differed in their sensitivity to membrane lipid composition, where compounds with appreciable permeability (i.e. at least 0.2 x 10(-6)cm/s) were possibly sensitive to membrane fluidity and apparent ion pair effects. Benzoic acid permeability ranged 51-fold across membrane types, suggesting acyl chain effect on membrane fluidity. Mannitol, sucrose, and taurocholic acid permeabilities were low and independent of lipid composition. Metoprolol permeability ranged 17-fold and exhibited a markedly high permeability across 1,2-dioleoyl-sn-glycero-3-[phospho-L-serine] due to apparent ion pair-facilitated transport. Compound permeability was lowest across the phosphatidylcholines, which is consistent with phosphatidylcholine exhibiting relatively high membrane rigidity. In contrast to results from phosphatidylethanolamines and phosphatidylserines, acyl chain unsaturation had no effect on permeability across phosphatidylcholines. In conclusion, while much remains unknown about PAMPA structure and subsequent PAMPA permeability, results here from five solutes suggest that, for solutes with appreciable permeability, lipid composition modulated drug permeability through possible membrane fluidity and apparent ion pair influences.


Subject(s)
Cell Membrane Permeability , Membrane Lipids/analysis , Membranes, Artificial , Anisotropy , Benzoic Acid/pharmacokinetics , Hydrogen-Ion Concentration , Mannitol/pharmacokinetics , Metoprolol/pharmacokinetics , Sucrose/pharmacokinetics , Taurocholic Acid/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...