Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20232023 02 03.
Article in English | MEDLINE | ID: mdl-36734300

ABSTRACT

This study presents the outcomes of the shared task competition BioCreative VII (Task 3) focusing on the extraction of medication names from a Twitter user's publicly available tweets (the user's 'timeline'). In general, detecting health-related tweets is notoriously challenging for natural language processing tools. The main challenge, aside from the informality of the language used, is that people tweet about any and all topics, and most of their tweets are not related to health. Thus, finding those tweets in a user's timeline that mention specific health-related concepts such as medications requires addressing extreme imbalance. Task 3 called for detecting tweets in a user's timeline that mentions a medication name and, for each detected mention, extracting its span. The organizers made available a corpus consisting of 182 049 tweets publicly posted by 212 Twitter users with all medication mentions manually annotated. The corpus exhibits the natural distribution of positive tweets, with only 442 tweets (0.2%) mentioning a medication. This task was an opportunity for participants to evaluate methods that are robust to class imbalance beyond the simple lexical match. A total of 65 teams registered, and 16 teams submitted a system run. This study summarizes the corpus created by the organizers and the approaches taken by the participating teams for this challenge. The corpus is freely available at https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-3/. The methods and the results of the competing systems are analyzed with a focus on the approaches taken for learning from class-imbalanced data.


Subject(s)
Data Mining , Natural Language Processing , Humans , Data Mining/methods
2.
Neural Comput Appl ; : 1-9, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34728902

ABSTRACT

Twitter has been a remarkable resource for research in pharmacovigilance in the last decade. Traditionally, rule- or lexicon-based methods have been utilized for automatically extracting drug tweets for human annotation. The process of human annotation to create labeled sets for machine learning models is laborious, time consuming and not scalable. In this work, we demonstrate the feasibility of applying weak supervision (noisy labeling) to select drug data, and build machine learning models using large amounts of noisy labeled data instead of limited gold standard labelled sets. Our results demonstrate the models built with large amounts of noisy data achieve similar performance than models trained on limited gold standard datasets, hence demonstrating that weak supervision helps reduce the need to rely on manual annotation, allowing more data to be easily labeled and useful for downstream machine learning applications, in this case drug mention identification.

3.
Epidemiologia (Basel) ; 2(3): 315-324, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-36417228

ABSTRACT

As the COVID-19 pandemic continues to spread worldwide, an unprecedented amount of open data is being generated for medical, genetics, and epidemiological research. The unparalleled rate at which many research groups around the world are releasing data and publications on the ongoing pandemic is allowing other scientists to learn from local experiences and data generated on the front lines of the COVID-19 pandemic. However, there is a need to integrate additional data sources that map and measure the role of social dynamics of such a unique worldwide event in biomedical, biological, and epidemiological analyses. For this purpose, we present a large-scale curated dataset of over 1.12 billion tweets, growing daily, related to COVID-19 chatter generated from 1 January 2020 to 27 June 2021 at the time of writing. This data source provides a freely available additional data source for researchers worldwide to conduct a wide and diverse number of research projects, such as epidemiological analyses, emotional and mental responses to social distancing measures, the identification of sources of misinformation, stratified measurement of sentiment towards the pandemic in near real time, among many others.

4.
Genomics Inform ; 18(2): e16, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32634870

ABSTRACT

There has been a dramatic increase in the popularity of utilizing social media data for research purposes within the biomedical community. In PubMed alone, there have been nearly 2,500 publication entries since 2014 that deal with analyzing social media data from Twitter and Reddit. However, the vast majority of those works do not share their code or data for replicating their studies. With minimal exceptions, the few that do, place the burden on the researcher to figure out how to fetch the data, how to best format their data, and how to create automatic and manual annotations on the acquired data. In order to address this pressing issue, we introduce the Social Media Mining Toolkit (SMMT), a suite of tools aimed to encapsulate the cumbersome details of acquiring, preprocessing, annotating and standardizing social media data. The purpose of our toolkit is for researchers to focus on answering research questions, and not the technical aspects of using social media data. By using a standard toolkit, researchers will be able to acquire, use, and release data in a consistent way that is transparent for everybody using the toolkit, hence, simplifying research reproducibility and accessibility in the social media domain.

5.
ArXiv ; 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-32550247

ABSTRACT

As the COVID-19 pandemic continues its march around the world, an unprecedented amount of open data is being generated for genetics and epidemiological research. The unparalleled rate at which many research groups around the world are releasing data and publications on the ongoing pandemic is allowing other scientists to learn from local experiences and data generated in the front lines of the COVID-19 pandemic. However, there is a need to integrate additional data sources that map and measure the role of social dynamics of such a unique world-wide event into biomedical, biological, and epidemiological analyses. For this purpose, we present a large-scale curated dataset of over 152 million tweets, growing daily, related to COVID-19 chatter generated from January 1st to April 4th at the time of writing. This open dataset will allow researchers to conduct a number of research projects relating to the emotional and mental responses to social distancing measures, the identification of sources of misinformation, and the stratified measurement of sentiment towards the pandemic in near real time.

SELECTION OF CITATIONS
SEARCH DETAIL
...