Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892002

ABSTRACT

Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder. During the last 15 years, advances in genomic technologies and the availability of increasingly large patient cohorts have greatly expanded our knowledge of the genetic architecture of ASD and its neurobiological mechanisms. Over two hundred risk regions and genes carrying rare de novo and transmitted high-impact variants have been identified. Additionally, common variants with small individual effect size are also important, and a number of loci are now being uncovered. At the same time, these new insights have highlighted ongoing challenges. In this perspective article, we summarize developments in ASD genetic research and address the enormous impact of large-scale genomic initiatives on ASD gene discovery.


Subject(s)
Autism Spectrum Disorder , Genetic Predisposition to Disease , Genomics , Humans , Risk Factors , Genomics/methods , Autism Spectrum Disorder/genetics , Genome-Wide Association Study , Autistic Disorder/genetics , Autistic Disorder/etiology
2.
Neurobiol Dis ; 198: 106540, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806131

ABSTRACT

Vaccinia-related kinase 1 (VRK1) is a gene which has been implicated in the pathological process of a broad range of neurodevelopmental disorders as well as neuropathies, such as Amyotrophic Lateral Sclerosis (ALS). Here we report a family presenting ALS in an autosomal recessive mode of inheritance, segregating with a homozygous missense mutation located in VRK1 gene (p.R321C; Arg321Cys). Proteomic analyses from iPSC-derived motor neurons identified 720 proteins eligible for subsequent investigation, and our exploration of protein profiles revealed significant enrichments in pathways such as mTOR signaling, E2F, MYC targets, DNA repair response, cell proliferation and energetic metabolism. Functional studies further validated such alterations, showing that affected motor neurons presented decreased levels of global protein output, ER stress and downregulation of mTOR signaling. Mitochondrial alterations also pointed to decreased reserve capacity and increased non-mitochondrial oxygen consumption. Taken together, our results present the main pathological alterations associated with VRK1 mutation in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Mitochondria , Motor Neurons , Protein Serine-Threonine Kinases , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Male , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Female , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteostasis/genetics , Middle Aged , Mutation, Missense , Adult
3.
Einstein (Sao Paulo) ; 21: eAE0622, 2023.
Article in English | MEDLINE | ID: mdl-38126653

ABSTRACT

The Scientists of Tomorrow/ Cientistas do Amanhã project is an immersive science training program developed by the Program of Post-Graduation in Health Sciences at Hospital Israelita Albert Einstein. This program was conducted in partnership with Volunteering and Escola Municipal de Ensino Fundamental Professor Paulo Freire in Paraisópolis, São Paulo, Brazil. The Scientists of Tomorrow Program comprised a short training period conducted in May 2022 involving 37 students, and a long training period from August to December 2022, which included 15 students. It aimed to popularize science through practical activities; transfer knowledge to young students; sensitize and guide them to pursue academic-scientific careers; reduce stereotypes about scientific work and scientists; and help students understand the social, political, and ethical roles of science within society. All activities were led by postgraduate students and professors from our postgraduate program, physicians, nurses, physiotherapists, biomedicals, and veterinarians from Hospital Israelita Albert Einstein, as well as medical students from Faculdade Israelita de Ciências da Saúde Albert Einstein . Activities in the short training included lectures on cinema and science, strategies to combat fake news, non-violent communication, innovation, design-thinking framework, and developing a scientific project. During the long training period, discussions were focused on nanotechnology, animal research, big data, bioinformatics, meditation, blood and bone marrow donation, telemedicine, sex and sexually-transmitted infections, rehabilitation, career opportunities, and scientific integrity. In addition, practical activities were further expanded using optical and confocal microscopy, cytometry, and basic concepts regarding the structure and function of living cells. The program also included the launching of the open-air outreach Education E-natureza activity, which turned students into ambassadors of nature. In conclusion, the Scientists of Tomorrow Program was innovative and enabled young students to learn that science is a collective activity that can enhance public health. In Brief Rangel et al. enumerated the Scientists of Tomorrow/Cientistas do Amanhã program, an immersive science initiative conducted in collaboration with a public school. The program, which involved 15 students, aimed to promote science, share knowledge, inspire academic paths, and underscore societal impacts. Led by postgraduates, professors, and healthcare experts, the program included diverse lectures and practical laboratory activities. Highlights Every research endeavor commences with a fundamental question. Sharing of findings by researchers and students contributes toward the expansion of knowledge. Teaching scientific methodology is a pivotal step in nurturing critical thinking skills. Science permeates our daily lives and plays a crucial role in addressing societal issues.


Subject(s)
Educational Personnel , Students, Medical , Humans , Brazil , Schools , Delivery of Health Care
4.
Naturwissenschaften ; 110(4): 31, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37389663

ABSTRACT

Plant strategies against herbivores are classically divided into chemical, physical, biotic defences. However, little is known about the relative importance of each type of plant defence, especially in the same species. Using the myrmecophyte Triplaris americana (both with and without ants), and the congeneric non-myrmecophyte T. gardneriana, we tested whether ant defence is more effective than other defences of naturally ant-free myrmecophytes and the non-myrmecophyte congeneric species, all spatially co-occurring. In addition, we investigated how plant traits vary among plant groups, and how these traits modulate herbivory. We sampled data on leaf area loss and plant traits from these tree groups in the Brazilian Pantanal floodplain, and found that herbivory is sixfold lower in plants with ants than in ant-free plants, supporting a major role of biotic defences against herbivory. Whereas ant-free plants had more physical defences (sclerophylly and trichomes), they had little effect on herbivory-only sclerophylly modulated herbivory, but with opposite effects depending on ants' presence and species identity. Despite little variation in the chemicals among plant groups, tannin concentrations and δ13C signatures negatively affected herbivory in T. americana plants with ants and in T. gardneriana, respectively. We showed that ant defence in myrmecophytic systems is the most effective against herbivory, as the studied plants could not fully compensate the lack of this biotic defence. We highlight the importance of positive insect-plant interactions in limiting herbivory, and therefore potentially plant fitness.


Subject(s)
Ants , Trees , Animals , Brazil , Herbivory , Phenotype
5.
Stem Cell Rev Rep ; 19(4): 1116-1123, 2023 05.
Article in English | MEDLINE | ID: mdl-36652145

ABSTRACT

Down syndrome (DS, or trisomy 21, T21), is the most common genetic cause of intellectual disability. Alterations in the complex process of cerebral cortex development contribute to the neurological deficits in DS, although the underlying molecular and cellular mechanisms are not completely understood. Human cerebral organoids (COs) derived from three-dimensional (3D) cultures of induced pluripotent stem cells (iPSCs) provide a new avenue for gaining a better understanding of DS neuropathology. In this study, we aimed to generate iPSCs from individuals with DS (T21-iPSCs) and euploid controls using urine-derived cells, which can be easily and noninvasively obtained from most individuals, and examine their ability to differentiate into neurons and astrocytes grown in monolayer cultures, as well as into 3D COs. We employed nonintegrating episomal vectors to generate urine-derived iPSC lines, and a simple-to-use system to produce COs with forebrain identity. We observed that both T21 and control urine-derived iPSC lines successfully differentiate into neurons and astrocytes in monolayer, as well as into COs that recapitulate early features of human cortical development, including organization of neural progenitor zones, programmed differentiation of excitatory and inhibitory neurons, and upper-and deep-layer cortical neurons as well as astrocytes. Our findings demonstrate for the first time the suitability of using urine-derived iPSC lines to produce COs for modeling DS.


Subject(s)
Cerebrum , Down Syndrome , Induced Pluripotent Stem Cells , Neurogenesis , Organoids , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Organoids/growth & development , Cerebrum/cytology , Cerebrum/growth & development , Down Syndrome/genetics , Down Syndrome/pathology , Down Syndrome/urine , Cell Culture Techniques, Three Dimensional , Humans , Neurons/cytology , Astrocytes/cytology , Cell Lineage
6.
Einstein (Säo Paulo) ; 21: eAE0622, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1528566

ABSTRACT

ABSTRACT The Scientists of Tomorrow/ Cientistas do Amanhã project is an immersive science training program developed by the Program of Post-Graduation in Health Sciences at Hospital Israelita Albert Einstein. This program was conducted in partnership with Volunteering and Escola Municipal de Ensino Fundamental Professor Paulo Freire in Paraisópolis, São Paulo, Brazil. The Scientists of Tomorrow Program comprised a short training period conducted in May 2022 involving 37 students, and a long training period from August to December 2022, which included 15 students. It aimed to popularize science through practical activities; transfer knowledge to young students; sensitize and guide them to pursue academic-scientific careers; reduce stereotypes about scientific work and scientists; and help students understand the social, political, and ethical roles of science within society. All activities were led by postgraduate students and professors from our postgraduate program, physicians, nurses, physiotherapists, biomedicals, and veterinarians from Hospital Israelita Albert Einstein, as well as medical students from Faculdade Israelita de Ciências da Saúde Albert Einstein . Activities in the short training included lectures on cinema and science, strategies to combat fake news, non-violent communication, innovation, design-thinking framework, and developing a scientific project. During the long training period, discussions were focused on nanotechnology, animal research, big data, bioinformatics, meditation, blood and bone marrow donation, telemedicine, sex and sexually-transmitted infections, rehabilitation, career opportunities, and scientific integrity. In addition, practical activities were further expanded using optical and confocal microscopy, cytometry, and basic concepts regarding the structure and function of living cells. The program also included the launching of the open-air outreach Education E-natureza activity, which turned students into ambassadors of nature. In conclusion, the Scientists of Tomorrow Program was innovative and enabled young students to learn that science is a collective activity that can enhance public health.

7.
Front Plant Sci ; 14: 1324056, 2023.
Article in English | MEDLINE | ID: mdl-38293620

ABSTRACT

Soil salinization is a significant abiotic factor threatening agricultural production, while the low availability of phosphorus (P) in plants is another worldwide limitation. Approximately 95-99% of the P in soil is unavailable to plants. Phosphate-solubilizing bacteria (PSB) transform insoluble phosphates into soluble forms that plants can utilize. The application of PSB can replace or partially reduce the use of P fertilizers. Therefore, selecting bacteria with high solubilization capacity from extreme environments, such as saline soils, becomes crucial. This study aimed to identify twenty-nine bacterial strains from the rhizosphere of Salicornia fruticosa by sequencing the 16S rDNA gene, evaluate their development in increasing concentrations of NaCl, classify them according to their salinity response, and determine their P solubilization capability. The bacteria were cultivated in nutrient agar medium with NaCl concentrations ranging from 0.5% to 30%. The phosphate solubilization capacity of the bacteria was evaluated in angar and broth National Botanical Research Institute (NBRIP) media supplemented with calcium phosphate (CaHPO4) and aluminum phosphate (AlPO4), and increased with 3% NaCl. All bacterial strains were classified as halotolerant and identified to the genera Bacillus, Enterobacter, Halomonas, Kushneria, Oceanobacillus, Pantoea, Pseudomonas, and Staphylococcus, with only one isolate was not identified. The isolates with the highest ability to solubilize phosphorus from CaHPO4 in the liquid medium were Kushneria sp. (SS102) and Enterobacter sp. (SS186), with 989.53 and 956.37 mg·Kg-1 P content and final pH of 4.1 and 3.9, respectively. For the solubilization of AlPO4, the most effective isolates were Bacillus sp. (SS89) and Oceanobacillus sp. (SS94), which raised soluble P by 61.10 and 45.82 mg·Kg-1 and final pH of 2.9 and 3.6, respectively. These bacteria demonstrated promising results in in vitro P solubilization and can present potential for the development of bioinput. Further analyses, involving different phosphate sources and the composition of produced organic acids, will be conducted to contribute to a comprehensive understanding of their applications in sustainable agriculture.

8.
Transl Psychiatry ; 12(1): 234, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668055

ABSTRACT

Oligogenic inheritance of autism spectrum disorder (ASD) has been supported by several studies. However, little is known about how the risk variants interact and converge on causative neurobiological pathways. We identified in an ASD proband deleterious compound heterozygous missense variants in the Reelin (RELN) gene, and a de novo splicing variant in the Cav3.2 calcium channel (CACNA1H) gene. Here, by using iPSC-derived neural progenitor cells (NPCs) and a heterologous expression system, we show that the variant in Cav3.2 leads to increased calcium influx into cells, which overactivates mTORC1 pathway and, consequently, further exacerbates the impairment of Reelin signaling. Also, we show that Cav3.2/mTORC1 overactivation induces proliferation of NPCs and that both mutant Cav3.2 and Reelin cause abnormal migration of these cells. Finally, analysis of the sequencing data from two ASD cohorts-a Brazilian cohort of 861 samples, 291 with ASD; the MSSNG cohort of 11,181 samples, 5,102 with ASD-revealed that the co-occurrence of risk variants in both alleles of Reelin pathway genes and in one allele of calcium channel genes confer significant liability for ASD. Our results support the notion that genes with co-occurring deleterious variants tend to have interconnected pathways underlying oligogenic forms of ASD.


Subject(s)
Autism Spectrum Disorder , Calcium Channels, T-Type , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Calcium Channels/genetics , Calcium Channels, T-Type/genetics , Genetic Predisposition to Disease , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Multifactorial Inheritance
9.
Front Neurosci ; 16: 828646, 2022.
Article in English | MEDLINE | ID: mdl-35360153

ABSTRACT

Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD. However, it is still unclear how IL-17a acts on the human developing brain and the cell types directly affected by IL-17a signaling. In this study, we used iPSC-derived neural progenitor cells (NPCs) from individuals with ASD of known and unknown genetic cause as well as from neurotypical controls to examine the effects of exogenous IL-17a on NPC proliferation, migration and neuronal differentiation, and whether IL-17a and genetic risk factors for ASD interact exacerbating alterations in NPC function. We observed that ASD and control NPCs endogenously express IL-17a receptor (IL17RA), and that IL-17a/IL17RA activation modulates downstream ERK1/2 and mTORC1 signaling pathways. Exogenous IL-17a did not induce abnormal proliferation and migration of ASD and control NPCs but, on the other hand, it significantly increased the expression of synaptic (Synaptophysin-1, Synapsin-1) and neuronal polarity (MAP2) proteins in these cells. Also, as we observed that ASD and control NPCs exhibited similar responses to exogenous IL-17a, it is possible that a more inflammatory environment containing other immune molecules besides IL-17a may be needed to trigger gene-environment interactions during neurodevelopment. In conclusion, our results suggest that exogenous IL-17a positively regulates the neuronal differentiation of human NPCs, which may disturb normal neuronal and synaptic development and contribute to MIA-related changes in brain function and behavior.

10.
Mol Genet Metab Rep ; 30: 100840, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35242572

ABSTRACT

Lecithin-cholesterol acyltransferase (LCAT), an enzyme that participates in lipoprotein metabolism, plays an important role in cholesterol homeostasis. Mutations in the LCAT gene can cause two rare genetic disorders: familial LCAT deficiency (FLD), which is characterized by corneal opacities, normocytic anemia, dyslipidemia, and proteinuria progressing to chronic renal failure, and fish-eye disease (FED), which causes dyslipidemia and progressive corneal opacities. Herein, we report six suspected cases of FLD in the backlands of Piauí, located in northeast Brazil. A genetic diagnosis was performed in index cases. Among these, a further investigation was performed to identify new cases in the families. In addition, molecular analyses were performed to verify the levels of consanguinity within families and the existence of a genetic relationship between them. All six index cases were confirmed as FLD with an identical mutation (c.803G > A, p.R268H). The genetic investigation confirmed another 7 new cases of FLD, 52 heterozygous and 6 individuals without mutations. The rate of consanguinity revealed that marriages within the family did not contribute to the high number of FLD cases within the restricted region. The elders of each family (patriarchs and matriarchs) were subjected to a kinship analysis and were more genetically related to each other than the control group. Bayesian analysis was implemented to confirm the hypothesis of connectivity among patriarchs and matriarchs and indicated that they were genetically more related to each other than would be randomly expected, thus suggesting the occurrence of a possible founder effect in these families.

11.
São Paulo; s.n; 2022.
Thesis in Portuguese | Coleciona SUS, Sec. Munic. Saúde SP, EMS-Producao, Sec. Munic. Saúde SP | ID: biblio-1525708

ABSTRACT

Introdução. A síndrome de Tourette (ST) é um transtorno de tique primário, caracterizado por tiques motores e verbais crônicos, com importante comprometimento psicossocial que acarreta alterações significativas na vida dos seus portadores. Sua etiologia permanece desconhecida e há poucas informações sobre o papel da intolerância alimentar associada à sua presença. Objetivo. Relatar um caso de Síndrome de Tourette como sintoma neurológico e exclusivo da Doença Celíaca. Resultados. Antitransglutaminase IgA, antiendomísio IgA e IgG, assim como antigliadina, foram detectados. O HLA-DQ8 foi positivo. Ela foi diagnosticada com sensibilidade celíaca ao glúten e uma dieta sem glúten foi iniciada. Uma grande melhora clínica foi observada em poucos meses. Conclusão. Este relato clínico abre uma nova possibilidade da existência de uma relação causal entre a presença de Síndrome de Tourette em pacientes com sensibilidade ao glúten e, por consequência, a conveniência de iniciar uma dieta livre de glúten nesses pacientes. Novos estudos serão necessários para apoiar esta observação.


Subject(s)
Humans , Male , Female
12.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299197

ABSTRACT

In recent years, accumulating evidence has shown that the innate immune complement system is involved in several aspects of normal brain development and in neurodevelopmental disorders, including autism spectrum disorder (ASD). Although abnormal expression of complement components was observed in post-mortem brain samples from individuals with ASD, little is known about the expression patterns of complement molecules in distinct cell types in the developing autistic brain. In the present study, we characterized the mRNA and protein expression profiles of a wide range of complement system components, receptors and regulators in induced pluripotent stem cell (iPSC)-derived neural progenitor cells, neurons and astrocytes of individuals with ASD and neurotypical controls, which constitute in vitro cellular models that recapitulate certain features of both human brain development and ASD pathophysiology. We observed that all the analyzed cell lines constitutively express several key complement molecules. Interestingly, using different quantification strategies, we found that complement C4 mRNA and protein are expressed in significantly lower levels by astrocytes derived from ASD individuals compared to control astrocytes. As astrocytes participate in synapse elimination, and diminished C4 levels have been linked to defective synaptic pruning, our findings may contribute to an increased understanding of the atypically enhanced brain connectivity in ASD.


Subject(s)
Astrocytes/pathology , Autism Spectrum Disorder/pathology , Complement C4/metabolism , Induced Pluripotent Stem Cells/pathology , Neural Stem Cells/pathology , Neurons/pathology , Astrocytes/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Cells, Cultured , Complement C4/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism
13.
Sci Rep ; 11(1): 5554, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692368

ABSTRACT

Dengue virus causes dengue hemorrhagic fever (DHF) and has been associated to fatal cases worldwide. The liver is one of the most important target tissues in severe cases, due to its intense viral replication and metabolic role. microRNAs role during infection is crucial to understand the regulatory mechanisms of DENV infection and can help in diagnostic and anti-viral therapies development. We sequenced the miRNome of six fatal cases and compared to five controls, to characterize the human microRNAs expression profile in the liver tissue during DHF. Eight microRNAs were differentially expressed, including miR-126-5p, a regulatory molecule of endothelial cells, miR-122-5p, a liver specific homeostasis regulator, and miR-146a-5p, an interferon-regulator. Enrichment analysis with predicted target genes of microRNAs revealed regulatory pathways of apoptosis, involving MAPK, RAS, CDK and FAS. Immune response pathways were related to NF- kB, CC and CX families, IL and TLR. This is the first description of the human microRNA and isomicroRNA profile in liver tissues from DHF cases. The results demonstrated the association of miR-126-5p, miR-122-5p and miR-146a-5p with DHF liver pathogenesis, involving endothelial repair and vascular permeability regulation, control of homeostasis and expression of inflammatory cytokines.


Subject(s)
Dengue Virus/metabolism , Gene Expression Profiling , Gene Expression Regulation , Liver/metabolism , MicroRNAs/biosynthesis , Severe Dengue/metabolism , Adult , Aged , Female , Humans , Male , Middle Aged
14.
Front Cell Neurosci ; 15: 803302, 2021.
Article in English | MEDLINE | ID: mdl-35095425

ABSTRACT

Biallelic pathogenic variants in TBCK cause encephaloneuropathy, infantile hypotonia with psychomotor retardation, and characteristic facies 3 (IHPRF3). The molecular mechanisms underlying its neuronal phenotype are largely unexplored. In this study, we reported two sisters, who harbored biallelic variants in TBCK and met diagnostic criteria for IHPRF3. We provided evidence that TBCK may play an important role in the early secretory pathway in neuroprogenitor cells (iNPC) differentiated from induced pluripotent stem cells (iPSC). Lack of functional TBCK protein in iNPC is associated with impaired endoplasmic reticulum-to-Golgi vesicle transport and autophagosome biogenesis, as well as altered cell cycle progression and severe impairment in the capacity of migration. Alteration in these processes, which are crucial for neurogenesis, neuronal migration, and cytoarchitecture organization, may represent an important causative mechanism of both neurodevelopmental and neurodegenerative phenotypes observed in IHPRF3. Whether reduced mechanistic target of rapamycin (mTOR) signaling is secondary to impaired TBCK function over other secretory transport regulators still needs further investigation.

15.
Hum Immunol ; 82(1): 8-10, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33129577

ABSTRACT

To improve the availability of three-dimensional (3D) structures of HLA molecules, we created the pHLA3D database. In its first version, we modeled and published 106 3D structures of HLA class I molecules from the HLA-A, HLA-B, and HLA-C loci. This paper presents an update of this database, providing more 127 3D structures of HLA class II molecules (41 DR, 42 DQ, and 44 DP), predicted via homology modeling with MODELLER and SWISS-MODEL. These new 3D structures of HLA class II molecules are now freely available at pHLA3D (www.phla3d.com.br) for immunologists and other researchers working with HLA molecules.


Subject(s)
HLA-DP Antigens/ultrastructure , HLA-DQ Antigens/ultrastructure , HLA-DR Antigens/ultrastructure , Computational Biology , Databases, Protein , Humans , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Software
16.
Front Neurosci ; 14: 23, 2020.
Article in English | MEDLINE | ID: mdl-32116493

ABSTRACT

Current evidence indicates that certain immune molecules such as components of the complement system are directly involved in neurobiological processes related to brain development, including neurogenesis, neuronal migration, synaptic remodeling, and response to prenatal or early postnatal brain insults. Consequently, complement system dysfunction has been increasingly implicated in disorders of neurodevelopmental origin, such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However, the mechanistic evidence for a causal relationship between impaired complement regulation and these disorders varies depending on the disease involved. Also, it is still unclear to what extent altered complement expression plays a role in these disorders through inflammation-independent or -dependent mechanisms. Furthermore, pathogenic mutations in specific complement components have been implicated in the etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The aims of this review are to discuss the current knowledge on the roles of the complement system in sculpting brain architecture and function during normal development as well as after specific inflammatory insults, such as maternal immune activation (MIA) during pregnancy, and to evaluate the existing evidence associating aberrant complement with developmental brain disorders.

17.
Hum Immunol ; 80(10): 834-841, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31239187

ABSTRACT

HLA epitope analysis emerged as a strategy to determine alloimmune risk in solid organ transplantation. However, it requires not only knowledge on HLA amino acids sequences, but also on HLA three-dimensional structures. Unfortunately, the number of structures available is still unsatisfactory. This work reports the modelling of 106 heterotrimeric (alpha chain + ß2M + peptide) HLA class I molecules. The models were generated by homology modelling using Modeller, refined using GalaxyRefine server, heterodimerized with Swiss-PDB Viewer and, finally, assessed as to their structural quality through Dali server. The final structures were made available through a free online database, pHLA3D (www.phla3d.com.br), developed in Ruby language using the Ruby on Rails web framework. Structural parameters were similar between refined molecules and their templates. The new database may improve HLA epitope analysis and better guide risk assessment in solid organ transplantation setting.


Subject(s)
Database Management Systems , Databases, Protein , Histocompatibility Antigens Class I/chemistry , Protein Structure, Secondary , Structural Homology, Protein , Alleles , Amino Acid Sequence , Epitopes/immunology , Histocompatibility , Humans , Models, Molecular , Web Browser
18.
Mol Genet Metab ; 125(1-2): 161-167, 2018 09.
Article in English | MEDLINE | ID: mdl-30030044

ABSTRACT

Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid antigens presented on CD1d molecules at the surface of antigen-presenting cells. GM2 is a glycosphingolipid abundant in cellular membranes and known to bind CD1d molecules, but the functional consequences of this binding are not completely clarified. Herein, we analyzed the effect of GM2 in iNKT cell activation. We found that culturing antigen-presenting cells or total peripheral blood mononuclear cells with GM2 did not induce activation of human iNKT cells, implying that this lipid is not antigenic for human iNKT cells. To investigate if this lipid could inhibit iNKT cell activation, we simultaneously incubated antigen-presenting cells with GM2 and the iNKT cell antigen α-Galactosylceramide (α-GalCer) and used them to stimulate iNKT cells. We found that GM2 reduced human iNKT cell activation in a dose-dependent manner. An explanation for this effect could be a direct competition of GM2 with antigenic lipids for CD1d binding. This was demonstrated by the use of an antibody (L363) that stains mouse CD1d:α-GalCer complexes, as in the presence of GM2 the amount of CD1d:α-GalCer complexes are reduced. We further explored the consequences of chronic GM2 overload on human iNKT cells by analyzing iNKT cells in patients diagnosed with GM2 gangliosidoses. We found that pediatric patients present a higher frequency of circulating CD4+ iNKT cells and concomitant lower frequency of CD4-CD8- iNKTs. A lower percentage of iNKT cells expressing the NK marker CD161 was also observed in these patients. In contrast, in two adult patients studied, no differences on iNKT cell phenotype were observed. Altogether, this study uncovers a new role for GM2 in the modulation of iNKT cell activation, thus strengthening the central role of lipid metabolism in iNKT cell biology.


Subject(s)
Antigens, CD1d/genetics , Galactosylceramides/metabolism , Gangliosidoses, GM2/metabolism , Glycosphingolipids/metabolism , Animals , Antigens, CD1d/metabolism , Humans , Lymphocyte Activation/drug effects , Mice , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/metabolism
19.
Mol Genet Metab ; 122(1-2): 107-112, 2017 09.
Article in English | MEDLINE | ID: mdl-28457718

ABSTRACT

Mucopolysaccharidosis (MPS) VI is an autosomal recessive lysosomal storage disorder arising from deficient activity of N-acetylgalactosamine-4-sulfatase (arylsulfatase B) and subsequent intracellular accumulation of the glycosaminoglycans (GAGs) dermatan sulfate and chondroitin-4-sulfate. Manifestations are multi-systemic and include skeletal abnormalities such as dysostosis multiplex and short stature. Reference height-for-age growth charts for treatment-naïve MPS VI patients have been published for both the slowly and rapidly progressing populations. Categorization of disease progression for these charts was based on urinary GAG (uGAG) level; high (>200µg/mg creatinine) levels identified subjects as rapidly progressing. Height data for 141 patients who began galsulfase treatment by the age of 18years were collected and stratified by baseline uGAG level and age at ERT initiation in 3-year increments. The reference MPS VI growth charts were used to calculate change in Z-score from pre-treatment baseline to last follow-up. Among patients with high baseline uGAG levels, galsulfase ERT was associated with an increase in Z-score for those beginning treatment at 0-3, >3-6, >6-9, >9-12, and >12-15years of age (p<0.05). Increases in Z-score were not detected for patients who began treatment between 15 and 18years of age, nor for patients with low (≤200µg/mg creatinine) baseline uGAG levels, regardless of age at treatment initiation. The largest positive deviation from untreated reference populations was seen in the high uGAG excretion groups who began treatment by 6years of age, suggesting an age- and severity-dependent impact of galsulfase ERT on growth.


Subject(s)
Body Height/drug effects , Enzyme Replacement Therapy , Mucopolysaccharidosis VI/drug therapy , N-Acetylgalactosamine-4-Sulfatase/therapeutic use , Adolescent , Age Factors , Child , Child, Preschool , Enzyme Replacement Therapy/adverse effects , Enzyme Replacement Therapy/methods , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Mucopolysaccharidosis VI/physiopathology , N-Acetylgalactosamine-4-Sulfatase/administration & dosage , N-Acetylgalactosamine-4-Sulfatase/adverse effects , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...