Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Microbe Interact ; 37(3): 327-337, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37759383

ABSTRACT

Pyrenophora tritici-repentis (tan spot) is a destructive foliar pathogen of wheat with global impact. This ascomycete fungus possesses a highly plastic open pangenome shaped by the gain and loss of effector genes. This study investigated the allelic variations in the chlorosis-encoding gene ToxB across 422 isolates representing all identified pathotypes and worldwide origins. To gain better insights into ToxB evolution, we examined its presence and variability in other Pyrenophora spp. A ToxB haplotype network was constructed, revealing the evolutionary relationships of this gene (20 haplotypes) across four Pyrenophora species. Notably, toxb, the homolog of ToxB, was detected for the first time in the barley pathogen Pyrenophora teres. The ToxB/toxb genes display evidence of selection that is characterized by loss of function, duplication, and diverse mutations. Within the ToxB/toxb open reading frame, 72 mutations were identified, including 14 synonymous, 55 nonsynonymous, and 3 indel mutations. Remarkably, a, ∼5.6-kb Copia-like retrotransposon, named Copia-1_Ptr, was found inserted in the toxb gene of a race 3 isolate. This insert disrupted the ToxB gene's function, a first case of effector gene disruption by a transposable element in P. tritici-repentis. Additionally, a microsatellite with 25 nucleotide repeats (0 to 10) in the upstream region of ToxB suggested a potential mechanism influencing ToxB expression and regulation. Exploring ToxB-like protein distribution in other ascomycetes revealed the presence of ToxB-like proteins in 19 additional species, including the Leotiomycetes class for the first time. The presence/absence pattern of ToxB-like proteins defied species relatedness compared with a phylogenetic tree, suggesting a past horizontal gene transfer event during the evolution of the ToxB gene. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food. This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Fungal Proteins , Phylogeny , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Triticum/genetics , Triticum/microbiology
2.
Methods Mol Biol ; 2659: 1-21, 2023.
Article in English | MEDLINE | ID: mdl-37249881

ABSTRACT

Plant pathogenic Fusarium spp. are widespread and cause important diseases on a wide host range, including economically important cereal and pulse crops. A number of molecular methods have been used to detect, identify, and quantify a long list of plant pathogenic Fusarium spp. In general, these methods are much faster, highly specific, more sensitive, and more accurate than culture-based methods and can be performed and interpreted by personnel with no specialized taxonomical expertise. The accurate isolation and identification of these pathogens is required to effectively manage diseases caused by pathogenic Fusarium spp. In this chapter, we present detailed molecular methods for detection, quantification, and differentiation between many of the Fusarium spp. associated with cereal and pulse crops.


Subject(s)
Fusarium , Fusarium/genetics , Edible Grain , Host Specificity , Plant Diseases
3.
Phytopathology ; 112(5): 1003-1015, 2022 May.
Article in English | MEDLINE | ID: mdl-34818906

ABSTRACT

Fusarium head blight (FHB) and Fusarium crown and root rot (FCRR) are major wheat diseases. Populations of FHB and FCRR pathogens are highly dynamic, and shifts in these populations in different regions is reported. Analyzing fungal populations associated with wheat node and grain tissues collected from different regions can provide useful information and predict diseases that might affect subsequent crops and effective disease management practices. In this study, wheat node and grain samples were collected from four representative sites across the western Canadian prairies in the 2018 growing season to characterize the major Fusarium spp. and other mycobiota associated with wheat in these regions. In total, 994 fungal isolates were recovered, and based on culture and molecular diagnostic methods, three genera constituted over 90% of all fungal isolates, namely Alternaria (39.6%), Fusarium (27.8%), and Parastagonospora (23.9%). A quantitative PCR (qPCR) diagnostic toolkit was developed to quantify the most frequently isolated Fusarium spp. in infected wheat tissues: Fusarium avenaceum, F. culmorum, F. graminearum, and F. poae. This qPCR specificity was validated in silico, in vitro, and in planta and proved specific to the target species. The qPCR results showed that F. graminearum was not detected frequently from wheat node and grain samples collected from four locations in this study. F. poae was the most abundant Fusarium species in grain samples in all tested locations. However, in node samples, F. culmorum (Beaverlodge and Scott) and F. avenaceum (Lacombe and Lethbridge) were the most abundant species. Trichothecene genotyping showed that the 3ADON is the most dominant trichothecene genotype (68%), followed by type-A trichothecenes (29.5%), whereas the 15ADON trichothecene genotype was least dominant (2.5%) and the NIV genotype was not detected. Moreover, a total of 129 translation elongation factor 1-alpha (TEF1α) sequences from nine Fusarium spp. were compared at the haplotype level to evaluate genetic variability and distribution. F. avenaceum and F. poae exhibited higher diversity as reflected by higher number of haplotypes present in these two species compared with the rest.


Subject(s)
Fusarium , Canada , Edible Grain/microbiology , Grassland , Plant Diseases/microbiology , Triticum/microbiology
4.
Appl Biosaf ; 26(1): 6-13, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-36033960

ABSTRACT

Introduction: Bacillus anthracis, the etiological agent of anthrax, produces long-lived spores, which are resistant to heat, cold, pH, desiccation, and chemical agents. The spores maintain their ability to produce viable bacteria even after decades, and when inhaled can cause fatal disease in over half of the clinical cases. Owing to these characteristics, anthrax has been repeatedly selected for both bioweapon and bioterrorism use. In the event of a bioterrorism attack, surfaces in the vicinity of the attack will be contaminated, and recovering from such an event requires rapid and effective decontamination. Previous decontamination method development has focused mainly on temperatures >0°C, and have shown poor efficacy at subzero temperatures. Methods: In this study, we demonstrate the use of calcium chloride (CaCl2) as a freezing point depression agent for pH-adjusted sodium hypochlorite (NaOCl) for the effective and rapid decontamination of B. anthracis Sterne strain spores at subzero temperatures. Results: We show the complete decontamination of 106 B. anthracis Sterne strain spores at temperatures as low as -20°C within 2.5 min by submersion in solution containing 25% (w/v) CaCl2, 0.50% NaOCl, and 0.40% (v/v) acetic acid. We also demonstrate significant reduction in number of spores at -28°C. Conclusions: The results show promise for rapidly decontaminating equipment and materials used in the response to bioterrorism events using readily available consumer chemicals. Future study should examine the efficacy of these results on complex surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...