Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 20473, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993487

ABSTRACT

Subvisible particles (SVPs) are a critical quality attribute of injectable therapeutic proteins (TPs) that needs to be controlled due to potential risks associated with drug product quality. The current compendial methods routinely used to analyze SVPs for lot release provide information on particle size and count. However, chemical identification of individual particles is also important to address root-cause analysis. Herein, we introduce Morphologically-Directed Raman Spectroscopy (MDRS) for SVP characterization of TPs. The following particles were used for method development: (1) polystyrene microspheres, a traditional standard used in industry; (2) photolithographic (SU-8); and (3) ethylene tetrafluoroethylene (ETFE) particles, candidate reference materials developed by NIST. In our study, MDRS rendered high-resolution images for the ETFE particles (> 90%) ranging from 19 to 100 µm in size, covering most of SVP range, and generated comparable morphology data to flow imaging microscopy. Our method was applied to characterize particles formed in stressed TPs and was able to chemically identify individual particles using Raman spectroscopy. MDRS was able to compare morphology and transparency properties of proteinaceous particles with reference materials. The data suggests MDRS may complement the current TPs SVP analysis system and product quality characterization workflow throughout development and commercial lifecycle.


Subject(s)
Heat-Shock Proteins , Spectrum Analysis, Raman , Particle Size
2.
AAPS PharmSciTech ; 24(1): 18, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36526853

ABSTRACT

Visible protein-like particle standards may improve visual inspection and/or appearance testing practices used in the biotechnology industry. They may improve assay performance resulting in better alignment and more standardized training among different companies. The National Institute of Standards and Technology (NIST) has conducted an interlaboratory study to test whether the standards under development mimic typical proteinaceous particles found in biotherapeutics and if they can be implemented during the visual inspection process. Fourteen organizations from industry and government have participated. A total of 20 labs from these 14 organizations participated with analysts from 6 formulation, 7 analytical, 4 quality control, and 3 manufacturing labs. The circulated samples consisted of abraded ethylene tetrafluoroethylene (ETFE) particles or photolithographic particles. The results consist of qualitative ratings, which varied substantially among organizations and within labs. Polydisperse ETFE particle suspensions, containing particles enriched in greater than 150 µm in size, were rated more favorably than the photolithographic particles by formulation and analytical scientists. The largest monodisperse photolithographic particles (approximately 300 µm in size) were favored equally compared to ETFE by all scientists. Solution modifications to decrease the settling rate or to alter optical properties of the ETFE solutions yielded lower ratings by the analysts. Both particle types received mixed ratings for their usability and for their application for visual inspection and for training purposes. Industry feedback will assist NIST in developing reference material(s) for visible protein-like particles.


Subject(s)
Proteins , Particle Size , Reference Standards , Quality Control
3.
J Pharm Sci ; 109(5): 1652-1661, 2020 05.
Article in English | MEDLINE | ID: mdl-31927040

ABSTRACT

As reported in the previous commentary (Ishii-Watabe et al., J Pharm Sci 2017), the Japanese biopharmaceutical research group is promoting collaborative multilaboratory studies to evaluate and standardize new methodologies for biopharmaceutical characterization and quality control. We have conducted the studies and held 2 annual meetings in 2018 and 2019. At the 2018 meeting, Dr. Rukman DeSilva of the U.S. Food and Drug Administration and Dr. Srivalli Telikepalli of the National Institute of Standards and Technology participated as guest speakers. At the 2019 meeting, we invited Prof. John Carpenter of the University of Colorado, Prof. Gerhard Winter and Prof. Wolfgang Friess of Ludwig Maximilian University of Munich, and Dr. Tim Menzen of Coriolis Pharma Research, as guest commentators. In both meetings, the main research topic was strategies for the characterization and control of protein aggregates/subvisible particles in drug products. Specifically, the use of the light obscuration method for insoluble particulate matter testing with reduced injection volumes, and a comparison of analytical performance between flow imaging and light obscuration were discussed. Other topics addressed included host cell protein analysis, bioassay, and quality control strategies. In this commentary, the recent achievements of the research group, meeting discussions, and future perspectives are summarized.


Subject(s)
Biological Products , Biological Assay , Biological Factors , Japan , Particle Size , Quality Control
4.
PDA J Pharm Sci Technol ; 73(5): 418-432, 2019.
Article in English | MEDLINE | ID: mdl-31209163

ABSTRACT

Visible particles may potentially pose safety and efficacy concerns if inadvertently administered to patients; therefore, it is crucial to monitor and characterize these particles. These particles may be composed of proteinaceous or non-proteinaceous material. Although particles made of non-proteinaceous material are unacceptable in drug products, proteinaceous particles may be acceptable on a case-by-case basis if they are characterized and shown to not pose any quality, efficacy, or safety concerns. The focus of this manuscript is on the proteinaceous particles that may potentially form in some biopharmaceuticals. Monitoring and tracking proteinaceous particles in these biopharmaceuticals can be challenging, but a universal protein-like particle standard might be able to help. The aim of this work is to evaluate abraded ethylene tetrafluoroethylene (ETFE) as a visible protein-like particle standard and demonstrate a semiquantitative method to show how this surrogate can be used to effectively monitor proteinaceous particles during formulation and analytical development. Studies indicated that the ETFE particles in solution better mimic the appearance and behavior of protein particles than the commonly used polystyrene microsphere standards and therefore could be a viable standard for visible proteinaceous particles. Such standards and the semiquantitative method illustrated could be used effectively during development to nondestructively identify potential stability problems.LAY ABSTRACT: Routine visual inspection of protein biopharmaceuticals is crucial to ensure the quality and consistency of drug products. Visible particles may potentially pose safety and efficacy concerns if administered to patients; therefore, it is important to monitor and to minimize them as much as possible. Visible proteinaceous particles, composed of aggregated protein in biopharmaceuticals, may be acceptable on a case-by-case basis if they are characterized and shown not to pose any quality, efficacy, or safety concerns. Monitoring and tracking these visible proteinaceous particles are challenging and could be aided by the use of a universal protein-like particle standard. In this work, a new visible protein-like particle surrogate made of ethylene tetrafluoroethylene (ETFE) will be introduced, and its use will be explored by developing a semiquantitative method to monitor proteinaceous particles in protein products. These studies show that ETFE particles possess desirable traits to become a viable protein-like particle standard that could be used during formulation development and to nondestructively identify potential stability problems.


Subject(s)
Biological Products/chemistry , Fluorocarbons/chemistry , Proteins/chemistry , Biological Products/standards , Drug Development , Drug Stability , Humans , Particle Size , Proteins/standards , Technology, Pharmaceutical/methods
5.
Anal Bioanal Chem ; 410(8): 2127-2139, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29411089

ABSTRACT

The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing. It must therefore embody the quality and characteristics of a typical biopharmaceutical product and be available long-term in a stable format with consistent product quality attributes. A stratified sampling and analysis plan using a series of qualified analytical and biophysical methods is described that assures RM 8671 meets these criteria. Results for the first three lots of RM 8671 highlight the consistency of material attributes with respect to size, charge, and identity. RM 8671 was verified to be homogeneous both within and between vialing lots, demonstrating the robustness of the lifecycle management plan. It was analyzed in concert with the in-house primary sample 8670 (PS 8670) to provide a historical link to this seminal material. RM 8671 was verified to be fit for its intended purpose as a technology innovation tool, external system suitability control, and cross-industry harmonization platform. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Animals , Biosimilar Pharmaceuticals/chemistry , Chromatography, Gel/methods , Chromatography, Gel/standards , Drug Stability , Dynamic Light Scattering/methods , Dynamic Light Scattering/standards , Electrophoresis, Capillary/methods , Electrophoresis, Capillary/standards , Humans , Microscopy/methods , Microscopy/standards , Models, Molecular , Peptide Mapping/methods , Peptide Mapping/standards , Protein Stability , Quality Control , Reference Standards , Spectrophotometry, Ultraviolet/methods , Spectrophotometry, Ultraviolet/standards , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards
6.
Anal Bioanal Chem ; 410(8): 2095-2110, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29428991

ABSTRACT

The NISTmAb is a monoclonal antibody Reference Material from the National Institute of Standards and Technology; it is a class-representative IgG1κ intended to serve as a pre-competitive platform for harmonization and technology development in the biopharmaceutical industry. The publication series of which this paper is a part describes NIST's overall control strategy to ensure NISTmAb quality and availability over its lifecycle. In this paper, the development of a control strategy for monitoring NISTmAb size heterogeneity is described. Optimization and qualification of size heterogeneity measurement spanning a broad size range are described, including capillary electrophoresis-sodium dodecyl sulfate (CE-SDS), size exclusion chromatography (SEC), dynamic light scattering (DLS), and flow imaging analysis. This paper is intended to provide relevant details of NIST's size heterogeneity control strategy to facilitate implementation of the NISTmAb as a test molecule in the end user's laboratory. Graphical abstract Representative size exclusion chromatogram of the NIST monoclonal antibody (NISTmAb). The NISTmAb is a publicly available research tool intended to facilitate advancement of biopharmaceutical analytics. HMW = high molecular weight (trimer and dimer), LMW = low molecular weight (2 fragment peaks). Peak labeled buffer is void volume of the column from L-histidine background buffer.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal/chemistry , Chromatography, Gel/methods , Dynamic Light Scattering/methods , Electrophoresis, Capillary/methods , Immunoglobulin G/chemistry , Protein Aggregates , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal, Humanized/analysis , Chromatography, Gel/standards , Dynamic Light Scattering/standards , Electrophoresis, Capillary/standards , Humans , Immunoglobulin G/analysis , Limit of Detection , Mice , Models, Molecular , Quality Control , Reference Standards , Sodium Dodecyl Sulfate/chemistry
7.
J Pharm Sci ; 106(6): 1499-1507, 2017 06.
Article in English | MEDLINE | ID: mdl-28209364

ABSTRACT

An accurate assessment of particle characteristics and concentrations in pharmaceutical products by flow imaging requires accurate particle sizing and morphological analysis. Analysis of images begins with the definition of particle boundaries. Commonly a single threshold defines the level for a pixel in the image to be included in the detection of particles, but depending on the threshold level, this results in either missing translucent particles or oversizing of less transparent particles due to the halos and gradients in intensity near the particle boundaries. We have developed an imaging analysis algorithm that sets the threshold for a particle based on the maximum gray value of the particle. We show that this results in tighter boundaries for particles with high contrast, while conserving the number of highly translucent particles detected. The method is implemented as a plugin for FIJI, an open-source image analysis software. The method is tested for calibration beads in water and glycerol/water solutions, a suspension of microfabricated rods, and stir-stressed aggregates made from IgG. The result is that appropriate thresholds are automatically set for solutions with a range of particle properties, and that improved boundaries will allow for more accurate sizing results and potentially improved particle classification studies.


Subject(s)
Image Processing, Computer-Assisted/methods , Immunoglobulin G/chemistry , Protein Aggregates , Algorithms , Glycerol/chemistry , Humans , Particle Size , Water/chemistry
8.
J Pharm Sci ; 104(5): 1575-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25753756

ABSTRACT

An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size-enriched into different size bins by low-speed centrifugation or a combination of gravitational sedimentation and fluorescence-activated cell sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5-10 µm in size displayed elevated cytokine release profiles compared with other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared with controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by microflow imaging, transmission electron microscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in vitro PBMC studies to rank-order the immunogenic potential of various types of mAb particles are discussed.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Flow Cytometry/methods , Particle Size , Humans , Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Leukocytes, Mononuclear/cytology , Microspheres , Nanoparticles/analysis , Nanoparticles/chemistry
9.
J Pharm Sci ; 104(2): 495-507, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25522000

ABSTRACT

Upon exposure to shaking stress, an IgG1 mAb formulation in both the liquid and lyophilized state formed subvisible particles. Because freeze-drying was expected to minimize protein physical instability under these conditions, the extent and nature of aggregate formation in the lyophilized preparation were examined using a variety of particle characterization techniques. The effects of formulation variables such as residual moisture content, reconstitution rate, and reconstitution medium were also examined. Upon reconstitution of shake-stressed lyophilized mAb, differences in protein particle size and number were observed by microflow digital imaging, with the reconstitution medium having the largest impact. Shake stress had minor effects on the structure of protein within the particles as shown by SDS-PAGE and FTIR analysis. The lyophilized mAb was shake stressed to different extents and stored for 3 months at different temperatures. Both extent of cake collapse and storage temperature affected the physical stability of the shake-stressed lyophilized mAb upon subsequent storage. These findings demonstrate that physical degradation upon shaking of a lyophilized IgG1 mAb formulation includes not only cake breakage, but also results in an increase in subvisible particles and turbidity upon reconstitution. The shake-induced cake breakage of the lyophilized IgG1 mAb formulation also resulted in decreased physical stability upon storage.


Subject(s)
Antibodies, Monoclonal/chemistry , Chemistry, Pharmaceutical/methods , Immunoglobulin G/chemistry , Stress, Mechanical , Drug Stability , Drug Storage/methods , Freeze Drying/methods
10.
Protein Sci ; 23(10): 1461-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25043635

ABSTRACT

The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates.


Subject(s)
Biosensing Techniques/methods , Chaperonin 60/chemistry , Chaperonin 60/metabolism , Antibodies, Monoclonal/metabolism , Binding Sites , Circular Dichroism , Fibroblast Growth Factor 1/metabolism , Humans , Immunoglobulin G/metabolism , Interferometry , Kinetics , Temperature
11.
J Pharm Sci ; 103(3): 796-809, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24452866

ABSTRACT

IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size-exclusion chromatography, Nanoparticle Tracking Analysis, Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from transmission electron microscopy and MFI images. Shaking samples without NaCl generated the most fibrillar particles, whereas stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1-containing aggregates and particles with some non-native disulfide cross-links, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Nanoparticles/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/ultrastructure , Chemical Phenomena , Cold Temperature/adverse effects , Cross-Linking Reagents/chemistry , Excipients/chemistry , Hot Temperature/adverse effects , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin G/metabolism , Immunoglobulin G/ultrastructure , Microscopy, Electron, Transmission , Nanoparticles/metabolism , Nanoparticles/ultrastructure , Particle Size , Protein Denaturation , Protein Stability , Protein Structure, Secondary , Sodium Chloride/chemistry , Solubility , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...