Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Toxicol Sci ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302735

ABSTRACT

Plasma half-life is a crucial pharmacokinetic parameter for estimating extralabel withdrawal intervals of drugs to ensure the safety of food products derived from animals. This study focuses on developing a quantitative structure-activity relationship (QSAR) model incorporating multiple machine learning and artificial intelligence algorithms, and aims to predict the plasma half-lives of drugs in six food animals, including cattle, chickens, goats, sheep, swine, and turkeys. By integrating four machine learning algorithms with five molecular descriptor types, 20 QSAR models were developed using data from the Food Animal Residue Avoidance Databank (FARAD) Comparative Pharmacokinetic Database. The deep neural network (DNN) algorithm demonstrated the best prediction ability of plasma half-lives. The DNN model with all descriptors achieved superior performance with a high coefficient of determination (R  2) of 0.82±0.19 in 5-fold cross-validation on the training sets and a R  2 of 0.67 on the independent test set, indicating accurate predictions and good generalizability. The final model was converted to a user-friendly web dashboard to facilitate its wide application by the scientific community. This machine learning-based QSAR model serves as a valuable tool for predicting drug plasma half-lives and extralabel withdrawal intervals in six common food animals based on physicochemical properties. It also provides a foundation to develop more advanced models to predict the tissue half-life of drugs in food animals.

2.
Regul Toxicol Pharmacol ; 153: 105707, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304113

ABSTRACT

Florfenicol is a broad-spectrum and bacteriostatic antibiotic with a time-dependent killing action. It is commonly used to treat respiratory diseases in goats in an extra-label manner. This study aimed to determine the plasma pharmacokinetics and milk residue depletion profiles and calculate the milk withdrawal interval (WDI) of florfenicol and its main metabolite florfenicol amine in lactating goats. Five healthy lactating goats were administered with 40 mg/kg florfenicol by subcutaneous injection, twice, 96 h apart. Plasma and milk samples were collected up to 864 h post the first injection. Non-compartmental analysis was used to estimate the plasma pharmacokinetic parameters. Milk WDIs were calculated using the U.S. Food and Drug Administration (FDA) method and European Medicines Agency (EMA) method. A Monte Carlo simulation was performed to generate simulated data for five virtual animals to meet the data requirement of the FDA method. The calculated milk WDIs based on florfenicol, florfenicol amine, and the combined (the sum of florfenicol and florfenicol amine) were 720.28, 690.45, and 872.69 h after the last injection using the FDA method. In conclusion, this study improves our understanding on the plasma pharmacokinetics and milk residue depletion kinetics of florfenicol and florfenicol amine in lactating ruminants after subcutaneous injections.

3.
Front Vet Sci ; 11: 1444009, 2024.
Article in English | MEDLINE | ID: mdl-39144087

ABSTRACT

Introduction: Prescribing fenbendazole medicated feed for pheasants in the USA is considered extra-label drug use under CPG Sec 615.115, and a safe estimated withdrawal interval (WDI) must be applied following administration to this minor food-producing species. This study sought to determine the pharmacokinetic and residue depletion profile for fenbendazole and its major metabolites to estimate a WDI for pheasants following fenbendazole administration as an oral medicated feed. Method: Pheasants (n = 32) were administered fenbendazole as an oral medicated feed (100 ppm) for 7 days. Fenbendazole, fenbendazole sulfoxide, and fenbendazole sulfone (FBZ-SO2) in liver and muscle samples were analyzed using HPLC-UV. Tissue WDIs were estimated using FDA, European Medicines Agency (EMA), and half-life multiplication methods for US poultry tolerances, EMA maximum residue limits, and the analytical limit of detection (LOD; 0.004 ppm). Terminal tissue elimination half-lives (T1/2) were estimated by non-compartmental analysis using a naïve pooled data approach. Results: The tissue T1/2 was 14.4 h for liver, 13.2 h for thigh muscle, and 14.1 h for pectoral muscle. The maximum estimated withdrawal interval was 153 h (7 days) for FBZ-SO2 in pectoral muscle using the FDA tolerance method (95% confidence interval for the 99th percentile of the population), and the LOD as the residue limit. Discussion: The results from this study support the use of FBZ-SO2 as the marker residue in the liver of pheasants and the provision of evidence based WDIs following the extra-label administration of fenbendazole medicated feed (100 ppm) for 7 days.

4.
Expert Opin Drug Metab Toxicol ; 20(7): 579-592, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38299552

ABSTRACT

INTRODUCTION: Pharmacovigilance plays a pivotal role in monitoring adverse events (AEs) related to chemical substances in human/animal populations. With increasing spontaneous-reporting systems, researchers turned to in-silico approaches to efficiently analyze drug safety profiles. Here, we review in-silico methods employed for assessing multiple drug-drug/drug-disease AEs covered by comparative analyses and visualization strategies. AREAS COVERED: Disproportionality, involving multi-stage statistical methodologies and data processing, identifies safety signals among drug-AE pairs. By stratifying data based on disease indications/demographics, researchers address confounders and assess drug safety. Comparative analyses, including clustering techniques and visualization techniques, assess drug similarities, patterns, and trends, calculate correlations, and identify distinct toxicities. Furthermore, we conducted a thorough Scopus search on 'pharmacovigilance,' yielding 5,836 publications spanning 2003 to 2023. EXPERT OPINION: Pharmacovigilance relies on diverse data sources, presenting challenges in the integration of in-silico approaches and requiring compliance with regulations and AI adoption. Systematic use of statistical analyses enables identifications of potential risks with drugs. Frequentist and Bayesian methods are used in disproportionalities, each with its strengths and weaknesses. Integration of pharmacogenomics with pharmacovigilance enables personalized medicine, with AI further enhancing patient engagement. This multidisciplinary approach holds promise, improving drug efficacy and safety, and should be a core mission of One-Health studies.


Subject(s)
Adverse Drug Reaction Reporting Systems , Bayes Theorem , Computer Simulation , Drug-Related Side Effects and Adverse Reactions , Pharmacovigilance , Humans , Drug-Related Side Effects and Adverse Reactions/epidemiology , Animals , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Pharmacogenetics , Pharmaceutical Preparations
5.
Annu Rev Anim Biosci ; 12: 161-185, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358836

ABSTRACT

Hummingbirds share biologically distinctive traits: sustained hovering flight, the smallest bird body size, and high metabolic rates fueled partially by nectar feeding that provides pollination to plant species. Being insectivorous and sometimes serving as prey to larger birds, they fulfill additional important ecological roles. Hummingbird species evolved and radiated into nearly every habitat in the Americas, with a core of species diversity in South America. Population declines of some of their species are increasing their risk of extinction. Threats to population health and genetic diversity are just beginning to be identified, including diseases and hazards caused by humans. We review the disciplines of population health, disease ecology, and genomics as they relate to hummingbirds. We appraise knowledge gaps, causes of morbidity and mortality including disease, and threats to population viability. Finally, we highlight areas of research need and provide ideas for future studies aimed at facilitating hummingbird conservation.


Subject(s)
Plant Nectar , Pollination , Humans , Animals , Birds/genetics , Genomics
6.
Food Chem Toxicol ; 181: 114098, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838212

ABSTRACT

Florfenicol is a broad-spectrum antibiotic commonly used in the U.S. to treat respiratory and enteric infections in goats in an extra-label manner, which requires scientifically based withdrawal intervals (WDIs) for edible tissues. This study aimed to determine the depletion profiles for florfenicol and florfenicol amine in plasma and tissues samples and to estimate WDIs for goats following subcutaneous injection of 40 mg/kg florfenicol, twice, 96 h apart. The samples were collected up to 50 days after the second dose. Pharmacokinetic parameters were calculated using non-compartmental analysis. Three different pharmacostatistical methods with different operational tolerances were used to calculate WDIs. The plasma half-life was 101.80 h for florfenicol and 207.69 h for florfenicol amine after the second dose. Using the FDA tolerance limit method, WDIs were 202 and 101 days, while the EMA maximum residue limit method estimated 179 and 96 days for the respective tissue concentrations to fall below limits of detection (0.12 µg/g for liver and 0.05 µg/g for kidney). This study characterizes plasma pharmacokinetics and tissue depletion profiles of florfenicol and florfenicol amine in goats following subcutaneous injections and reports estimated WDIs for food safety assessment of florfenicol in goats.


Subject(s)
Goats , Thiamphenicol , Animals , Anti-Bacterial Agents/analysis , Half-Life
7.
Food Chem Toxicol ; 181: 114062, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769896

ABSTRACT

Humans can be exposed to per- and polyfluoroalkyl substances (PFAS) through dietary intake from milk and edible tissues from food animals. This study developed a physiologically based pharmacokinetic (PBPK) model to predict tissue and milk residues and estimate withdrawal intervals (WDIs) for multiple PFAS including PFOA, PFOS and PFHxS in beef cattle and lactating dairy cows. Results showed that model predictions were mostly within a two-fold factor of experimental data for plasma, tissues, and milk with an estimated coefficient of determination (R2) of >0.95. The predicted muscle WDIs for beef cattle were <1 day for PFOA, 449 days for PFOS, and 69 days for PFHxS, while the predicted milk WDIs in dairy cows were <1 day for PFOA, 1345 days for PFOS, and zero day for PFHxS following a high environmental exposure scenario (e.g., 49.3, 193, and 161 ng/kg/day for PFOA, PFOS, and PFHxS, respectively, for beef cattle for 2 years). The model was converted to a web-based interactive generic PBPK (igPBPK) platform to provide a user-friendly dashboard for predictions of tissue and milk WDIs for PFAS in cattle. This model serves as a foundation for extrapolation to other PFAS compounds to improve safety assessment of cattle-derived food products.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Adult , Humans , Female , Cattle , Animals , Milk/chemistry , Tissue Distribution , Lactation , Fluorocarbons/analysis , Environmental Exposure , Alkanesulfonic Acids/pharmacokinetics , Environmental Pollutants/analysis
8.
Food Chem Toxicol ; 179: 113920, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37506867

ABSTRACT

Establishing maximum-residue limits (MRLs) for veterinary medicine helps to protect the human food supply. Guidelines for establishing MRLs are outlined by regulatory authorities that drug sponsors follow in each country. During the drug approval process, residue limits are targeted for specific animal species and matrices. Therefore, MRLs are commonly not established for other species. This study demonstrates unestablished MRLs can be reliably predicted for under-represented food commodity groups using machine learning (ML). Classification methods with imbalanced data were used to analyze MRL data from multiple countries by implementing resampling techniques in different ML classifiers. Afterward, we developed and evaluated a data-mining method for predicting unestablished MRLs. Seven different ML classifiers such as support vector classifier, multi-layer perceptron (MLP), random forest, decision tree, k-neighbors, Gaussian NB, and AdaBoost have been selected in this baseline study. Among these, the neural network MLP classifier reliably scored the highest average-weighted F1 score (accuracy >99% with markers and ≈88% without markets) in predicting unestablished MRLs. This provides the first study to apply ML algorithms in regulatory food animal medicine. By predicting and estimating MRLs, we can potentially decrease the use and cost of live animals and the overall research burden of determining new MRLs.


Subject(s)
Algorithms , Veterinary Drugs , Animals , Humans , Neural Networks, Computer , Machine Learning , Food , Support Vector Machine
9.
Pharmaceutics ; 15(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37242626

ABSTRACT

Data curation has significant research implications irrespective of application areas. As most curated studies rely on databases for data extraction, the availability of data resources is extremely important. Taking a perspective from pharmacology, extracted data contribute to improved drug treatment outcomes and well-being but with some challenges. Considering available pharmacology literature, it is necessary to review articles and other scientific documents carefully. A typical method of accessing articles on journal websites is through long-established searches. In addition to being labor-intensive, this conventional approach often leads to incomplete-content downloads. This paper presents a new methodology with user-friendly models to accept search keywords according to the investigators' research fields for metadata and full-text articles. To accomplish this, scientifically published records on the pharmacokinetics of drugs were extracted from several sources using our navigating tool called the Web Crawler for Pharmacokinetics (WCPK). The results of metadata extraction provided 74,867 publications for four drug classes. Full-text extractions performed with WCPK revealed that the system is highly competent, extracting over 97% of records. This model helps establish keyword-based article repositories, contributing to comprehensive databases for article curation projects. This paper also explains the procedures adopted to build the proposed customizable-live WCPK, from system design and development to deployment phases.

10.
Mol Ecol ; 32(12): 3089-3101, 2023 06.
Article in English | MEDLINE | ID: mdl-36934423

ABSTRACT

Anthropogenic changes have altered the historical distributions of many North American taxa. As environments shift, ecological and evolutionary processes can combine in complex ways to either stimulate or inhibit range expansion. Here, we examined the role of evolution in a rapid range expansion whose ecological context has been well-documented, Anna's Hummingbird (Calypte anna). Previous studies have suggested that the C. anna range expansion is the result of an ecological release facilitated by human-mediated environmental changes, where access to new food sources have allowed further filling of the abiotic niche. We examined the role of gene flow and adaptation during range expansion from their native California breeding range, north into Canada and east into New Mexico and Texas, USA. Using low coverage whole genome sequencing we found high genetic diversity, low divergence, and little evidence of selection on the northern and eastern expansion fronts. Additionally, there are no clear barriers to gene flow across the native and expanded range. The lack of selective signals between core and expanded ranges could reflect (i) an absence of novel selection pressure in the expanded range (supporting the ecological release hypothesis), (ii) swamping of adaptive variation due to high gene flow, or (iii) limitations of genome scans for detecting small shifts in allele frequencies across many loci. Nevertheless, our results provide an example where strong selection is not apparent during a rapid, contemporary range shift.


Subject(s)
Birds , Gene Flow , Animals , Humans , Birds/genetics , New Mexico , Texas , Breeding
12.
Animals (Basel) ; 12(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230347

ABSTRACT

This review provides a summary of extracted data from the published literature that contains drug residue depletion data for edible tissues and milk following treatment of sheep and goats. Out of 20,234 records obtained during the initial search, data from 177 records were included in this review. The data is separated by antibiotic class for ease of comparison between studies. Extracted data includes the active ingredient, dosing information, animal health status, analytical method and limits of detection, tolerance and maximum residue limit information, and time frames relative to residue absence or detection. This information is useful for understanding drug residue depletion profiles following extra-label use and for estimating withdrawal intervals, in order to protect the human food chain.

13.
Front Vet Sci ; 9: 924854, 2022.
Article in English | MEDLINE | ID: mdl-36090172

ABSTRACT

Avian pox is a common avian virus that in its cutaneous form can cause characteristic lesions on a bird's dermal surfaces. Detection of avian pox in free-ranging birds historically relied on observations of visual lesions and/or histopathology, both which can underestimate avian pox prevalence. We compared traditional visual observation methods for avian pox with molecular methods that utilize minimally invasive samples (blood, toenail clipping, feathers, and dermal swabs) in an ecologically important group of birds, hummingbirds. Specifically, avian pox prevalence in several species of hummingbirds were examined across multiple locations using three different methods: (1) visual inspection of hummingbirds for pox-like lesions from a long-term banding data set, (2) qPCR assay of samples from hummingbird carcasses from wildlife rehabilitation centers, and (3) qPCR assay of samples from live-caught hummingbirds. A stark difference in prevalences among these three methods was identified, with an avian pox prevalence of 1.5% from banding data, 20.4% from hummingbird carcasses, and 32.5% from live-caught hummingbirds in California. This difference in detection rates underlines the necessity of a molecular method to survey for avian pox, and this study establishes one such method that could be applied to other wild bird species. Across all three methods, Anna's hummingbirds harbored significantly higher avian pox prevalence than other species examined, as did males compared with females and birds caught in Southern California compared with Northern California. After hatch-year hummingbirds also harbored higher avian pox prevalences than hatch-year hummingbirds in the California banding data set and the carcass data set. This is the first study to estimate the prevalence of avian pox in hummingbirds and address the ecology of this hummingbird-specific strain of avian pox virus, providing vital information to inform future studies on this charismatic and ecologically important group of birds.

14.
Proc Biol Sci ; 289(1982): 20220991, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100019

ABSTRACT

Nuanced understanding of seasonal movements of partially migratory birds is paramount to species and habitat conservation. Using nascent statistical methods, we identified migratory strategies of birds outfitted with radio-frequency identification (RFID) tags detected at RFID feeders in two sites in California, USA. We quantified proportions of migrants and residents and the seasonal phenology for each movement strategy in Allen's and Anna's hummingbirds; we also validated our methodology by fitting our model to obligate migratory black-chinned hummingbirds. Allen's and Anna's hummingbirds exhibited characteristics of facultative migratory behaviour. We also quantified apparent annual survival for each migratory strategy and found that residents had significantly higher probabilities of apparent survival. Low survival estimates for migrants suggest that a high proportion of birds in the migrant group permanently emigrated from our study sites. Considered together, our analyses suggest that hummingbirds in both northern and southern California sites partake in diverse and highly plastic migratory behaviours. Our assessment elucidates the dynamics underlying idiosyncratic migratory behaviours of two species of hummingbirds, in addition to describing a framework for similar assessments of migratory behaviours using the multi-state open robust design with state uncertainty model and single-site dynamics.


Subject(s)
Animal Migration , Birds , Animals , Ecosystem
15.
Front Vet Sci ; 9: 991772, 2022.
Article in English | MEDLINE | ID: mdl-36105005

ABSTRACT

Florfenicol is a broad-spectrum antibiotic commonly prescribed in an extra-label manner for treating meat and dairy goats. Scientific data in support of a milk withdrawal interval recommendation is limited to plasma pharmacokinetic data and minimal milk residue data that is limited to cattle. Therefore, a rapid residue detection test (RRDT) could be a useful resource to determine if milk samples are free of drug residues and acceptable for sale. This study compared a commercially available RRDT (Charm® FLT strips) to detect florfenicol residues in fresh milk samples from healthy adult dairy breed goats treated with florfenicol (40 mg/kg subcutaneously twice 4 days apart) with quantitative analysis of florfenicol concentrations using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). In addition, storage claims for testing bovine milk using the RRDT were assessed using stored goat milk samples. Milk samples were collected every 12 h for a minimum of 26 days. Commercial RRDT strips remained positive in individual goats ranging from 528 to 792 h (22-33 days) after the second dose, whereas, UPLC-MS/MS indicated the last detectable florfenicol concentration in milk samples ranged from 504 to 720 h (21-30 days) after the second dose. Results from stored milk samples from treated goats indicate that samples can be stored for up to 5 days in the refrigerator and 60 days in the freezer after milking prior to being tested with a low risk of false-negative test results due to drug degradation. Elevated somatic cell counts and bacterial colony were noted in some of the milk samples in this study, but further study is required to understand the impact of these quality factors on RRDT results.

16.
Food Chem Toxicol ; 168: 113332, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940329

ABSTRACT

Meloxicam is a non-steroidal anti-inflammatory drug (NSAID) commonly used in food-producing animals, including chickens in an extralabel manner. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model for meloxicam in broiler chickens and laying hens to facilitate withdrawal interval (WDI) estimations. The model structure for broiler chickens contained six compartments including plasma, muscle, liver, kidney, fat and rest of body, while an additional compartment of ovary was included for laying hens. The model adequately simulated available pharmacokinetic data of meloxicam in plasma of broiler chickens as well as tissue and egg data of laying hens. The model was converted to a web-based interface and used to predict WDIs following extralabel administrations. The results showed that the estimated WDIs were 50, 44, 11, 3, 3, 22 and 4 days for liver, kidney, muscle, fat, ovary, yolk and white, respectively in laying hens after 14 repeated oral administrations of meloxicam (1 mg/kg) at 24-h intervals. This model provides a useful and flexible tool for risk assessment and management of residues for meat and eggs from chickens treated with meloxicam and will serve as a basis for extrapolation to other NSAID drugs and other poultry species to aid animal-derived food safety assessment.


Subject(s)
Chickens , Eggs , Animal Feed , Animals , Anti-Inflammatory Agents, Non-Steroidal , Female , Internet , Meloxicam
17.
Toxicol Sci ; 188(2): 180-197, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35642931

ABSTRACT

Violative chemical residues in edible tissues from food-producing animals are of global public health concern. Great efforts have been made to develop physiologically based pharmacokinetic (PBPK) models for estimating withdrawal intervals (WDIs) for extralabel prescribed drugs in food animals. Existing models are insufficient to address the food safety concern as these models are either limited to 1 specific drug or difficult to be used by non-modelers. This study aimed to develop a user-friendly generic PBPK platform that can predict tissue residues and estimate WDIs for multiple drugs including flunixin, florfenicol, and penicillin G in cattle and swine. Mechanism-based in silico methods were used to predict tissue/plasma partition coefficients and the models were calibrated and evaluated with pharmacokinetic data from Food Animal Residue Avoidance Databank (FARAD). Results showed that model predictions were, in general, within a 2-fold factor of experimental data for all 3 drugs in both species. Following extralabel administration and respective U.S. FDA-approved tolerances, predicted WDIs for both cattle and swine were close to or slightly longer than FDA-approved label withdrawal times (eg, predicted 8, 28, and 7 days vs labeled 4, 28, and 4 days for flunixin, florfenicol, and penicillin G in cattle, respectively). The final model was converted to a web-based interactive generic PBPK platform. This PBPK platform serves as a user-friendly quantitative tool for real-time predictions of WDIs for flunixin, florfenicol, and penicillin G following FDA-approved label or extralabel use in both cattle and swine, and provides a basis for extrapolating to other drugs and species.


Subject(s)
Drug Residues , Animals , Cattle , Clonixin/analogs & derivatives , Drug Residues/analysis , Drugs, Generic , Models, Biological , Penicillin G/pharmacokinetics , Swine , Thiamphenicol/analogs & derivatives
18.
Regul Toxicol Pharmacol ; 132: 105170, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35460801

ABSTRACT

Meloxicam is a non-steroidal anti-inflammatory drug (NSAID) commonly prescribed in an extralabel manner for treating chickens in urbanized settings. The objectives of this study were to determine meloxicam depletion profiles in eggs and ovarian follicles and to estimate associated withdrawal intervals (WDI) in laying hens following a single intravenous or repeated oral administration. The observed peak concentration of meloxicam in ovarian follicles were consistently higher than in egg yolk and egg white samples. Terminal half-lives were 31-h, 113-h and 12-h in ovarian follicles, egg yolk and egg white samples, respectively, for repeated oral administrations at 1 mg/kg for 20 doses at 12-h intervals. The terminal half-life following a single intravenous administration at 1 mg/kg was 50-h for ovarian follicles. Meloxicam WDI estimations using ovarian follicle and egg yolk concentration data following 20 doses at 12-h intervals were 36 and 12 days, respectively. Meloxicam WDI estimation using egg yolk concentration data following 8 doses at 24-h intervals was 12 days. These results improve our understanding on the residue depletion of meloxicam from chickens' reproductive tracts and egg products and provide WDIs to help ensure food safety for humans consuming eggs from treated laying hens.


Subject(s)
Chickens , Drug Residues , Administration, Intravenous , Administration, Oral , Animals , Drug Residues/analysis , Egg Yolk , Eggs/analysis , Female , Meloxicam/analysis , Ovarian Follicle
19.
Front Vet Sci ; 9: 826367, 2022.
Article in English | MEDLINE | ID: mdl-35310412

ABSTRACT

Meloxicam is commonly prescribed for treating chickens in backyard or small commercial operations despite a paucity of scientific data establishing tissue withdrawal interval recommendations following extra-label drug use (ELDU). Historically, ELDU withdrawal intervals (WDIs) following meloxicam administration to chickens have been based on the time when meloxicam concentrations fall below detectable concentrations in plasma and egg samples. To date, no studies have addressed tissue residues. ELDU WDIs are commonly calculated using terminal elimination half-lives derived from pharmacokinetic studies. This study estimated pharmacokinetic parameters for laying hens following meloxicam administration and compared ELDU WDIs calculated using tissue terminal elimination half-lives vs. those calculated using FDA tolerance and EMA's maximum regulatory limit statistical methods, respectively. In addition, ELDU WDIs were calculated using plasma meloxicam concentrations from live birds to determine if plasma data could be used as a proxy for estimating tissue WDIs. Healthy domestic hens were administered meloxicam at 1 mg/kg intravenous (IV) once, 1 mg/kg orally (PO) once daily for eight doses or 1 mg/kg PO twice daily for 20 doses. Analytical method validation was performed and meloxicam concentrations were quantified using high-performance liquid chromatography. In general, the terminal elimination technique resulted in the longest ELDU WDIs, followed by the FDA tolerance and then EMA's maximum residue limit methods. The longest ELDU WDIs were 72, 96, and 384 (or 120 excluding fat) h for the IV, PO once daily for eight doses, and PO twice daily for 20 doses, respectively. Plasma data are a possible dataset for estimating a baseline for tissue ELDU WDI estimations when tissue data are not available for chickens treated with meloxicam. Finally, pharmacokinetic parameters were similar in laying hens to those published for other avian species.

20.
Vet Res Commun ; 46(3): 903-916, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35322371

ABSTRACT

Effects and mechanism of carbonyl cyanide chlorophenylhydrazone (CCCP) on antimicrobial activity of florfenicol (FF) and thiamphenicol (TAP) were investigated against amphenicol-resistant Actinobacillus pleuropneumoniae and Pasteurella multocida isolated from diseased swine. Broth microdilution and time-kill assays indicated that CCCP dose-dependently and substantially (4-32 fold MIC reduction) improved amphenicol antimicrobial activity. When combined with CCCP at the lowest literature reported dose (2-5 µg/mL), 85% FF resistant A. pleuropneumoniae and 92% resistant P. multocida showed significantly reduced FF MICs (≥ 4-fold). In contrast, none or few of the susceptible A. pleuropneumoniae and P. multocida had FF MICs reduction ≥ 4-fold. 90% FF resistant A. pleuropneumoniae and 96% resistant P. multocida carried the floR gene, indicating strong association with the FloR efflux pump. With CCCP, the intracellular FF concentration increased by 71% in floR+ resistant A. pleuropneumoniae and 156% in floR+ resistant P. multocida strains but not the susceptible strains. The degree of reduction in TAP MICs was found consistently in parallel to FF for both bacteria. Taken together, partially attributed to blockage of drug-efflux, the combination of FF or TAP with CCCP at sub-cytotoxic concentrations was demonstrated and showed feasibility to combat amphenicol-resistant A. pleuropneumoniae and P. multocida isolated from diseased swine.


Subject(s)
Actinobacillus pleuropneumoniae , Pasteurella multocida , Swine Diseases , Actinobacillus pleuropneumoniae/genetics , Animals , Anti-Bacterial Agents/pharmacology , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Chloramphenicol/pharmacology , Microbial Sensitivity Tests/veterinary , Nitriles , Pasteurella multocida/genetics , Swine , Swine Diseases/drug therapy , Swine Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL