Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 31(4): 1177-1190, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34032972

ABSTRACT

A luminescent Cobalt(II) co-crystal [Co13(PDC)16(H2O)24.7H2O] 1 (where H2PDC = 2,6-pyridinedicarboxylic acid) have been prepared by oven-heating and slow evaporation of solvent. Single crystal X-ray diffraction (SCXRD) analysis revealed that 1 is a mixture of complexes that crystallizes in the triclinic space group P-1 and the geometry around the Co(II) ions is octahedral. The structure is extensively imbued with hydrogen bonding that helps in stabilizing the complex. Thermogravimetric analysis indicates that 1 is thermally stable up to 364 οC. The luminescence properties of 1 revealed a strong emission centered at 437 nm (λex = 345 nm) assigned to ligand to metal charge transfer (LMCT). The luminescence sensing of 1 towards volatile organic molecules were also examined. However, 1 displayed a turn off towards methanol compared to other molecules with high quenching efficiency and low limit of detection (3.5 × 10-4 vol%). The results show excellent selectively and high sensitivity. Powder X-ray diffraction studies revealed that the structural integrity of the complex was maintained after exposure to methanol vapour. Theoretical studies also revealed small binding energy (-413.2 au) and low energy gap (1.19) for 1-CH3OH adduct.

2.
J Environ Sci (China) ; 64: 264-275, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29478648

ABSTRACT

We herein report the removal of amodiaquine, an emerging drug contaminant from aqueous solution using [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] (fum=fumaric acid; bpy=4,4-bipyridine; bdc=benzene-1,4-dicarboxylate) metal-organic frameworks (MOFs) as adsorbents. The adsorbents were characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, and powder X-ray diffraction (PXRD). Adsorption process for both adsorbents were found to follow the pseudo-first-order kinetics, and the adsorption equilibrium data fitted best into the Freundlich isotherm with the R2 values of 0.973 and 0.993 obtained for [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] respectively. The maximum adsorption capacities foramodiaquine in this study were found to be 0.478 and 47.62mg/g on the [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] MOFs respectively, and were obtained at pH of 4.3 for both adsorbents. FT-IR spectroscopy analysis of the MOFs after the adsorption process showed the presence of the drug. The results of the study showed that the prepared MOFs could be used for the removal of amodiaquine from wastewater.


Subject(s)
Amodiaquine/analysis , Metal-Organic Frameworks/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Adsorption , Amodiaquine/chemistry , Carboxylic Acids/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , X-Ray Diffraction , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...