Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
J Dev Orig Health Dis ; 12(5): 721-730, 2021 10.
Article in English | MEDLINE | ID: mdl-33118903

ABSTRACT

Prenatal insults during fetal development result in increased likelihood of developing chronic disease. Obesity, the biggest risk factor for the development of metabolic disease, is affected by several genetic and environmental factors. High-fat diet (HFD) consumption is usually linked with the development of obesity. The main goal of this study was to analyze the impact of the exposure to a HFD in prenatally stressed animals. For this purpose, we subjected pregnant BALB/c mice to restraint stress for 2 h a day between gestational day (GD) 14 and GD 21. Prenatally stressed and control offspring of both sexes were postnatally exposed to a HFD for 24 weeks. We found that prenatal stress (PS) per se produced disturbances in males such as increased total blood cholesterol and triglycerides, with a decrease in mRNA expression of sirtuin-1. When these animals were fed a HFD, we observed a rise in glucose and insulin levels and an increase in visceral adipose tissue gene expression of leptin, resistin, and interleukin-1 beta. Although females proved to be more resilient to PS consequences, when they were fed a HFD, they showed significant metabolic impairment. In addition to the changes observed in males, females also presented an increase in body weight and adiposity and a rise in cholesterol levels.


Subject(s)
Diet, High-Fat/adverse effects , Metabolic Diseases/etiology , Mice, Inbred BALB C/metabolism , Animals , Diet, High-Fat/methods , Disease Models, Animal , Female , Metabolic Diseases/diet therapy , Mice , Mice, Inbred BALB C/abnormalities , Pregnancy
2.
PLoS One ; 7(12): e50992, 2012.
Article in English | MEDLINE | ID: mdl-23239997

ABSTRACT

Subclinical low-grade systemic inflammation has been associated with obesity, insulin resistance and metabolic syndrome (MS). Recent studies have highlighted the role of gut microbiota in these disorders. The toll-like receptor 4 (TLR4) plays a key role in the innate immune response activation. We studied two polymorphisms (+3725G/C and 11350G/C) in the 3' untranslated region (3'UTR) of the TLR4 gene that may alter its expression and their association with metabolic disorders related to systemic inflammation. We cloned the 3'UTR into a luciferase reporter system and compared wild-type 3'UTR (WT) and +3725C variant (MUT) constructs luciferase activities. MUT construct reduced the reporter gene activity by 30% compared to WT (P = 0.0001). To evaluate the association between these polymorphisms with biochemical and clinical overweight related variables, we conducted a population cross-sectional study in 966 men of Argentine general population. Considering smoking as a confounding variable that causes systemic inflammation, we studied these possible effects in both, smokers and nonsmokers. The 11350G/C polymorphism was not detected in our sample whereas the CC genotype of +3725 polymorphism was associated with lean subjects (p = 0.011) and higher Adiponectin levels (p = 0.021). Subjects without any NCEP/ATP III MS component were associated with this genotype as well (p = 0.001). These results were strengthened in nonsmokers, in which CC genotype was associated with lean subjects (p = 0.003) and compared with G carriers showed significantly lower BMI (25.53 vs. 28.60 kg/m2; p = 0.023) and waist circumference (89.27 vs. 97.51 cm; p = 0.025). None of these associations were found in smokers. These results showed that +3725C variant has a functional effect down-regulating gene expression and it could be considered as a predictive factor against overweight, particularly in nonsmokers. Considering the role of TLR4 in inflammation, these findings would suggest that the presence of +3725C variant could predict a lower prevalence of chronic metabolic disorders.


Subject(s)
Immunity, Innate , Overweight , Toll-Like Receptor 4/genetics , 3' Untranslated Regions/genetics , Adiponectin/blood , Adult , Gene Expression Regulation , Genetic Association Studies , Humans , Insulin Resistance/genetics , Male , Metabolic Syndrome/genetics , Obesity/genetics , Overweight/blood , Overweight/epidemiology , Overweight/genetics , Polymorphism, Single Nucleotide , Smoking
3.
In. Gagliardino, Juan José. Análisis de genes candidatos para insulino resistencia en pacientes con Sindrome metabólico. Buenos Aires, Ministerio de Salud de la Nación, 2007. . (120503).
Monography in Spanish | BINACIS | ID: bin-120503
SELECTION OF CITATIONS
SEARCH DETAIL
...