Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 06 09.
Article in English | MEDLINE | ID: mdl-34106828

ABSTRACT

Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.


Subject(s)
Cell Nucleus/metabolism , Chromatin , Chromosomal Proteins, Non-Histone , Chromosomes , Mitosis/physiology , Cell Line , Cell Nucleus/chemistry , Chromatin/chemistry , Chromatin/metabolism , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/chemistry , Chromosomes/metabolism , Humans , Methylation
2.
Nucleus ; 5(6): 626-35, 2014.
Article in English | MEDLINE | ID: mdl-25493640

ABSTRACT

The eukaryotic nucleus is structurally and functionally organized, as reflected in the distribution of its protein and DNA components. The genome itself is segregated into euchromatin and heterochromatin that replicate in a distinct spatio-temporal manner. We used a combination of fluorescence in situ hybridization (FISH) and DamID to investigate the localization of the early and late replicating components of the genome in a lymphoblastoid cell background. Our analyses revealed that the bulk of late replicating chromatin localizes to the nuclear peripheral heterochromatin (PH) in a chromosome size and gene density dependent manner. Late replicating DNA on small chromosomes exhibits a much lower tendency to localize to PH and tends to associate with alternate repressive subcompartments such as pericentromeric (PCH) and perinucleolar heterochromatin (PNH). Furthermore, multicolor FISH analysis revealed that late replicating loci, particularly on the smaller chromosomes, may associate with any of these 3 repressive subcompartments, including more than one at the same time. These results suggest a functional equivalence or redundancy among the 3 subcompartments. Consistent with this notion, disruption of nucleoli resulted in an increased association of late replicating loci with peripheral heterochromatin. Our analysis reveals that rather than considering the morphologically distinct PH, PCH and PNH as individual subcompartments, they should be considered in aggregate as a functional compartment for late replicating chromatin.


Subject(s)
Cell Compartmentation/genetics , Cell Nucleus/genetics , DNA Replication/genetics , Heterochromatin/genetics , Cell Line , Cell Nucleus/ultrastructure , Chromosomes/genetics , Euchromatin/genetics , Genome, Human , Heterochromatin/ultrastructure , Humans , In Situ Hybridization, Fluorescence
3.
Blood ; 119(16): 3820-7, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22378846

ABSTRACT

The ß-globin locus control region (LCR) is necessary for high-level ß-globin gene transcription and differentiation-dependent relocation of the ß-globin locus from the nuclear periphery to the central nucleoplasm and to foci of hyperphosphorylated Pol II "transcription factories" (TFys). To determine the contribution of individual LCR DNaseI hypersensitive sites (HSs) to transcription and nuclear location, in the present study, we compared ß-globin gene activity and location in erythroid cells derived from mice with deletions of individual HSs, deletions of 2 HSs, and deletion of the whole LCR and found all of the HSs had a similar spectrum of activities, albeit to different degrees. Each HS acts as an independent module to activate expression in an additive manner, and this is correlated with relocation away from the nuclear periphery. In contrast, HSs have redundant activities with respect to association with TFys and the probability that an allele is actively transcribed, as measured by primary RNA transcript FISH. The limiting effect on RNA levels occurs after ß-globin genes associate with TFys, at which time HSs contribute to the amount of RNA arising from each burst of transcription by stimulating transcriptional elongation.


Subject(s)
Cell Nucleus/metabolism , Locus Control Region/genetics , Nucleoplasmins/metabolism , Transcription, Genetic/physiology , beta-Globins/genetics , Animals , Erythroid Cells/metabolism , Gene Deletion , Gene Expression Regulation, Developmental/physiology , Mice , Mice, Transgenic , RNA, Messenger/genetics , beta-Globins/metabolism
4.
Science ; 326(5950): 289-93, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19815776

ABSTRACT

We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.


Subject(s)
Cell Nucleus/ultrastructure , Chromatin/chemistry , Chromosomes, Human , DNA/chemistry , Genome, Human , Biotin , Cell Line, Transformed , Chromatin Immunoprecipitation , Chromosomes, Human/chemistry , Chromosomes, Human/ultrastructure , Computational Biology , Gene Library , Humans , In Situ Hybridization, Fluorescence , Models, Molecular , Monte Carlo Method , Nucleic Acid Conformation , Principal Component Analysis , Protein Conformation , Sequence Analysis, DNA
5.
Genes Dev ; 20(11): 1447-57, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16705039

ABSTRACT

We have examined the relationship between nuclear localization and transcriptional activity of the endogenous murine beta-globin locus during erythroid differentiation. Murine fetal liver cells were separated into distinct erythroid maturation stages by fluorescence-activated cell sorting, and the nuclear position of the locus was determined at each stage. We find that the beta-globin locus progressively moves away from the nuclear periphery with increasing maturation. Contrary to the prevailing notion that the nuclear periphery is a repressive compartment in mammalian cells, beta(major)-globin expression begins at the nuclear periphery prior to relocalization. However, relocation of the locus to the nuclear interior with maturation is accompanied by an increase in beta(major)-globin transcription. The distribution of nuclear polymerase II (Pol II) foci also changes with erythroid differentiation: Transcription factories decrease in number and contract toward the nuclear interior. Moreover, both efficient relocalization of the beta-globin locus from the periphery and its association with hyperphosphorylated Pol II transcription factories require the locus control region (LCR). These results suggest that the LCR-dependent association of the beta-globin locus with transcriptionally engaged Pol II foci provides the driving force for relocalization of the locus toward the nuclear interior during erythroid maturation.


Subject(s)
Erythroid Cells/metabolism , Globins/genetics , Locus Control Region , Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Nucleus/genetics , In Situ Hybridization, Fluorescence , Liver/cytology , Liver/embryology , Mice , RNA Polymerase II/metabolism
6.
Blood ; 108(4): 1395-401, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16645164

ABSTRACT

The locus control region (LCR) was thought to be necessary and sufficient for establishing and maintaining an open beta-globin locus chromatin domain in the repressive environment of the developing erythrocyte. However, deletion of the LCR from the endogenous locus had no significant effect on chromatin structure and did not silence transcription. Thus, the cis-regulatory elements that confer the open domain remain unidentified. The conserved DNaseI hypersensitivity sites (HSs) HS-62.5 and 3'HS1 that flank the locus, and the region upstream of the LCR have been implicated in globin gene regulation. The flanking HSs bind CCCTC binding factor (CTCF) and are thought to interact with the LCR to form a "chromatin hub" involved in beta-globin gene activation. Hispanic thalassemia, a deletion of the LCR and 27 kb upstream, leads to heterochromatinization and silencing of the locus. Thus, the region upstream of the LCR deleted in Hispanic thalassemia (upstream Hispanic region [UHR]) may be required for expression. To determine the importance of the UHR and flanking HSs for beta-globin expression, we generated and analyzed mice with targeted deletions of these elements. We demonstrate deletion of these regions alone, and in combination, do not affect transcription, bringing into question current models for the regulation of the beta-globin locus.


Subject(s)
5' Flanking Region/genetics , Base Sequence/genetics , Globins/genetics , Locus Control Region/genetics , Sequence Deletion , Transcription, Genetic/genetics , Animals , Chromatin/genetics , Gene Expression Regulation/genetics , Globins/biosynthesis , Mice , Mice, Knockout , Models, Genetic , Quantitative Trait Loci/genetics , Thalassemia/genetics , Thalassemia/metabolism , Transcriptional Activation
7.
Chromosome Res ; 11(5): 513-25, 2003.
Article in English | MEDLINE | ID: mdl-12971726

ABSTRACT

Recent studies of nuclear organization have shown an apparent correlation between the localization of genes within the interphase nucleus and their transcriptional status. In several instances, actively transcribed gene loci have been found significantly looped away from their respective chromosome territories (CTs), presumably as a result of their expression. Here, we show evidence that extrusion of a gene locus from a CT by itself is not necessarily indicative of transcriptional activity, but also can reflect a poised state for activation. We found the murine and a wild-type human beta-globin locus looped away from their CTs at a high frequency only in a proerythroblast cell background, prior to the activation of globin transcription. Conversely, a mutant allele lacking the locus control region (LCR), which is required for high-level globin expression, was mostly coincident with the CT. The LCR may thus be responsible for the localization of the globin locus prior to activation. Replacement of the LCR with a B-cell-specific regulatory element, while also extruding the globin locus, brought it closer to the repressive centromeric heterochromatin compartment. We therefore suggest that the looping of gene loci from their CTs may reflect poised and repressed states, as well as the previously documented transcriptionally active state.


Subject(s)
Cell Nucleus , Chromosomes/genetics , Gene Expression Regulation , Models, Genetic , Transcription, Genetic/genetics , Animals , Cell Line , Centromere/genetics , Globins/genetics , Humans , In Situ Hybridization, Fluorescence , Locus Control Region/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...