Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 26(4): 618-32, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-16909122

ABSTRACT

Multiple chromosome 3p tumor suppressor genes (TSG) have been proposed in the pathogenesis of ovarian cancer based on complex patterns of 3p loss. To attain functional evidence in support of TSGs and identify candidate regions, we applied a chromosome transfer method involving cell fusions of the tumorigenic OV90 human ovarian cancer cell line, monoallelic for 3p and an irradiated mouse cell line containing a human chromosome 3 in order to derive OV90 hybrids containing normal 3p fragments. The resulting hybrids showed complete or incomplete suppression of tumorigenicity in nude mouse xenograft assays, and varied in their ability to form colonies in soft agarose and three-dimensional spheroids in a manner consistent with alteration of their in vivo tumorigenic phenotypes. Expression microarray analysis identified a set of common differentially expressed genes, such as SPARC, DAB2 and VEGF, some of which have been shown implicated in ovarian cancer. Genotyping assays revealed that they harbored normal 3p fragments, some of which overlapped candidate TSG regions (3p25-p26, 3p24 and 3p14-pcen) identified previously in loss of heterozygosity analyses of ovarian cancers. However, only the 3p12-pcen region was acquired in common by all hybrids where expression microarray analysis identified differentially expressed genes. The correlation of 3p12-pcen transfer and tumor suppression with a concerted re-programming of the cellular transcriptome suggest that the putative TSG may have affected key underlying events in ovarian cancer.


Subject(s)
Adenocarcinoma/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 3 , Genes, Tumor Suppressor/physiology , Ovarian Neoplasms/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Transfer Techniques , Humans , Mice , Mice, Nude , Xenograft Model Antitumor Assays
2.
Genome Res ; 11(12): 2127-32, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11731504

ABSTRACT

To increase the density of a gene map of the zebrafish, Danio rerio, we have placed 3119 expressed sequence tags (ESTs) and cDNA sequences on the LN54 radiation hybrid (RH) panel. The ESTs and genes mapped here join 748 SSLp markers and 459 previously mapped genes and ESTs, bringing the total number of markers on the LN54 RH panel to 4226. Addition of these new markers brings the total LN54 map size to 14,372 cR, with 118 kb/cR. The distribution of ESTs according to linkage groups shows relatively little variation (minimum, 73; maximum, 201). This observation, combined with a relatively uniform size for zebrafish chromosomes, as previously indicated by karyotyping, indicates that there are no especially gene-rich or gene-poor chromosomes in this species. We developed an algorithm to provide a semiautomatic method for the selection of additional framework markers for the LN54 map. This algorithm increased the total number of framework markers to 1150 and permitted the mapping of a high percentage of sequences that could not be placed on a previous version of the LN54 map. The increased concentration of expressed sequences on the LN54 map of the zebrafish genome will facilitate the molecular characterization of mutations in this species.


Subject(s)
Gene Expression Profiling/methods , Radiation Hybrid Mapping/methods , Zebrafish/genetics , Animals , Expressed Sequence Tags , Genetic Linkage/genetics , Genetic Markers/genetics
3.
Genomics ; 64(1): 119-26, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-10708527

ABSTRACT

We have characterized a collection of zebrafish/mouse somatic cell hybrids with 211 genes and markers chosen from the 25 zebrafish linkage groups. Most of the zebrafish genome is represented in this collection with 88% of genes/markers present in at least one hybrid cell line. Although most hybrids contain chromosomal fragments, there are a few instances where a complete or nearly complete zebrafish chromosome has been maintained in a mouse background, based on multiple markers covering the entire chromosome. In addition to their use in mapping studies, this collection of somatic cell hybrids should constitute an important tool as a source of specific chromosome fragments and for assessing the function of genome regions.


Subject(s)
Zebrafish/genetics , Animals , Cell Line , Genetic Linkage , Genetic Markers , Hybrid Cells , In Situ Hybridization, Fluorescence , Mice , Microsatellite Repeats , Polymerase Chain Reaction
4.
Proc Natl Acad Sci U S A ; 96(17): 9745-50, 1999 Aug 17.
Article in English | MEDLINE | ID: mdl-10449765

ABSTRACT

The zebrafish is an excellent genetic system for the study of vertebrate development and disease. In an effort to provide a rapid and robust tool for zebrafish gene mapping, a panel of radiation hybrids (RH) was produced by fusion of irradiated zebrafish AB9 cells with mouse B78 cells. The overall retention of zebrafish sequences in the 93 RH cell lines that constitute the LN54 panel is 22%. Characterization of the LN54 panel with 849 simple sequence length polymorphism markers, 84 cloned genes and 122 expressed sequence tags allowed the production of an RH map whose total size was 11,501 centiRays. From this value, we estimated the average breakpoint frequency of the LN54 RH panel to correspond to 1 centiRay = 148 kilobase. Placement of a group of 235 unbiased markers on the RH map suggests that the map generated for the LN54 panel, at present, covers 88% of the zebrafish genome. Comparison of marker positions in RH and meiotic maps indicated a 96% concordance. Mapping expressed sequence tags and cloned genes by using the LN54 panel should prove to be a valuable method for the identification of candidate genes for specific mutations in zebrafish.


Subject(s)
Chromosome Mapping/methods , Polymorphism, Genetic , Zebrafish/genetics , Animals , Expressed Sequence Tags , Genetic Linkage , Genetic Markers , Meiosis , Mice , Polymerase Chain Reaction
6.
Biochem Cell Biol ; 75(5): 641-9, 1997.
Article in English | MEDLINE | ID: mdl-9551186

ABSTRACT

The zebrafish, Danio rerio, is becoming an increasingly popular model for the study of vertebrate development. Indeed, the biology of the fish offers great advantages for such studies. The life cycle of the zebrafish is relatively short (2-3 months) and the embryos develop outside the mother, facilitating the visualization of any mutated phenotype. At present, more than 1000 embryonic mutations have been reported. However, until recently, there was no physical or genetic map for this organism. In an effort to generate such a map, we have produced and characterized a panel of zebrafish-mouse cell hybrids. We have used whole-cell fusion to transfer zebrafish chromosomes from two different zebrafish cell lines into mouse recipient cells, thus generating more than 100 hybrids. Using fluorescence in situ hybridization and polymerase chain reaction analysis, we have determined the zebrafish chromosome composition of these hybrids. Here we report that elements from the 25 linkage groups of the zebrafish genome are present in our hybrids. These hybrids could identify the chromosomal location of genes affected in zebrafish mutants.


Subject(s)
Chromosome Mapping/methods , Hybrid Cells , Zebrafish/genetics , Animals , Cell Fusion , Cell Line , Fibroblasts , Genetic Linkage , Genome , Mice , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...