Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Front Chem ; 12: 1338614, 2024.
Article in English | MEDLINE | ID: mdl-38807978

ABSTRACT

[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.

2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612511

ABSTRACT

Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 µg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1ß, CD4, lysozyme and perforin was observed in fish treated with 40 µg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.


Subject(s)
Anti-Infective Agents , Piscirickettsiaceae Infections , Salmo salar , Animals , Copper , Piscirickettsiaceae Infections/drug therapy , Piscirickettsiaceae Infections/veterinary , Anti-Bacterial Agents/pharmacology
3.
Microorganisms ; 12(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38543581

ABSTRACT

In this study, bacterial isolates C1-4-7, D2-4-6, and M1-4-11 from Antarctic soil were phenotypically and genotypically characterized, and their antibacterial spectrum and that of cell-free culture supernatant were investigated. Finally, the effect of temperature and culture medium on the production of antimicrobial compounds was investigated. The three bacteria were identified as different strains of the genus Pseudomonas. The three bacteria were multi-drug resistant to antibiotics. They exhibited different patterns of growth inhibition of pathogenic bacteria. M1-4-11 was remarkable for inhibiting the entire set of pathogenic bacteria tested. All three bacteria demonstrated optimal production of antimicrobial compounds at 15 °C and 18 °C. Among the culture media studied, Nutrient broth would be the most suitable to promote the production of antimicrobial compounds. The thermostability exhibited by the antimicrobial molecules secreted, their size of less than 10 kDa, and their protein nature would indicate that these molecules are bacteriocin-like compounds.

4.
Microorganisms ; 12(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543677

ABSTRACT

Aquaculture is a growing industry worldwide, but it faces challenges related to animal health. These challenges include infections by parasites, bacteria, and viral pathogens. These harmful pathogens have devastating effects on the industry, despite efforts to control them through vaccination and antimicrobial treatments. Unfortunately, these measures have proven insufficient to address the sanitary problems, resulting in greater environmental impact due to the excessive use of antimicrobials. In recent years, probiotics have emerged as a promising solution to enhance the performance of the immune system against parasitic, bacterial, and viral pathogens in various species, including mammals, birds, and fish. Some probiotics have been genetically engineered to express and deliver immunomodulatory molecules. These promote selective therapeutic effects and specific immunization against specific pathogens. This review aims to summarize recent research on the use of probiotics in fish aquaculture, with a particular emphasis on genetically modified probiotics. In particular, we focus on the advantages of using these microorganisms and highlight the main barriers hindering their widespread application in the aquaculture industry.

5.
Comput Struct Biotechnol J ; 21: 2558-2578, 2023.
Article in English | MEDLINE | ID: mdl-37122632

ABSTRACT

Butyrate is a microbiota-produced metabolite, sensed by host short-chain fatty acid receptors FFAR2 (Gpr43), FFAR3 (Gpr41), HCAR2 (Gpr109A), and Histone deacetylase (HDAC) that promotes microbiota-host crosstalk. Butyrate influences energy uptake, developmental and immune response in mammals. This microbial metabolite is produced by around 79 anaerobic genera present in the mammalian gut, yet little is known about the role of butyrate in the host-microbiota interaction in salmonid fish. To further our knowledge of this interaction, we analyzed the intestinal microbiota and genome of Atlantic salmon (Salmo salar), searching for butyrate-producing genera and host butyrate receptors. We identified Firmicutes, Proteobacteria, and Actinobacteria as the main butyrate-producing bacteria in the salmon gut microbiota. In the Atlantic salmon genome, we identified an expansion of genes orthologous to FFAR2 and HCAR2 receptors, and class I and IIa HDACs that are sensitive to butyrate. In addition, we determined the expression levels of orthologous of HCAR2 in the gut, spleen, and head-kidney, and FFAR2 in RTgutGC cells. The effect of butyrate on the Atlantic salmon immune response was evaluated by analyzing the pro and anti-inflammatory cytokines response in vitro in SHK-1 cells by RT-qPCR. Butyrate decreased the expression of the pro-inflammatory cytokine IL-1ß and increased anti-inflammatory IL-10 and TGF-ß cytokines. Butyrate also reduced the expression of interferon-alpha, Mx, and PKR, and decreased the viral load at a higher concentration (4 mM) in cells treated with this molecule before the infection with Infectious Pancreatic Necrosis Virus (IPNV) by mechanisms independent of FFAR2, FFAR3 and HCAR2 expression that probably inhibit HDAC. Moreover, butyrate modified phosphorylation of cytoplasmic proteins in RTgutGC cells. Our data allow us to infer that Atlantic salmon have the ability to sense butyrate produced by their gut microbiota via different specific targets, through which butyrate modulates the immune response of pro and anti-inflammatory cytokines and the antiviral response.

6.
Front Microbiol ; 14: 1072793, 2023.
Article in English | MEDLINE | ID: mdl-37007466

ABSTRACT

The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds.

7.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768285

ABSTRACT

Intestinal dysbiosis is related to the physiopathology and clinical manifestation of rheumatoid arthritis (RA) and the response to pharmacologic treatment. The objectives of this study were (1) to analyze the effect of conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) on the abundance of gut microbiota's bacteria; (2) to evaluate the relationship between the differences in microbial abundance with the serum levels of intestinal fatty-acid binding protein 2 (IFABP2), cytokines, and the response phenotype to csDMARDs therapy in RA. A cross-sectional study was conducted on 23 women diagnosed with RA. The abundance of bacteria in gut microbiota was determined with qPCR. The ELISA technique determined serum levels of IFABP2, TNF-α, IL-10, and IL-17A. We found that the accumulated dose of methotrexate or prednisone is negatively associated with the abundance of Lactobacillus but positively associated with the abundance of Bacteroides fragilis. The Lactobacillus/Porphyromonas gingivalis ratio was associated with the Disease Activity Score-28 for RA with Erythrocyte Sedimentation Rate (DAS28-ESR) (r = 0.778, p = 0.030) and with the levels of IL-17A (r = 0.785, p = 0.027) in the group treated with csDMARD. Moreover, a relation between the serum levels of IFABP2 and TNF-α (r = 0.593, p = 0.035) was observed in the group treated with csDMARD. The serum levels of IFABP2 were higher in patients with secondary non-response to csDMARDs therapy. In conclusion, our results suggest that the ratios of gut microbiota's bacteria and intestinal permeability seems to establish the preamble for therapeutic secondary non-response in RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Gastrointestinal Microbiome , Lactobacillus , Female , Humans , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cross-Sectional Studies , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Interleukin-17 , Pilot Projects , Porphyromonas gingivalis , Tumor Necrosis Factor-alpha/therapeutic use , Intestines/microbiology , Intestines/physiopathology , Cell Membrane Permeability
8.
Microorganisms ; 10(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36422366

ABSTRACT

Previously, we reported an in vitro evaluation regarding antibacterial effects against F. psychrophilum by a new Cu (I) complex, [Cu(NN1)2](ClO4). This study presents the results of an in vivo evaluation of [Cu(NN1)2](ClO4) added as a dietary supplement against F. psychrophilum in rainbow trout. The results showed that the administration of [Cu(NN1)2](ClO4) at 29 and 58 µg/g of fish for 15 days does not affect the growth of rainbow trout. On the other hand, the amount of copper present in the liver, intestine, and muscle of rainbow trout was determined. The results showed that the amount of copper in the liver, when compared between treated fish and control fish, does not change. While, in the intestine, an increase in the fish fed at 58 µg/g of fish was observed. In muscle, a slight decrease at 29 µg/g was obtained. Additionally, copper concentrations in the pond water after 15 days of feeding with the [Cu(NN1)2](ClO4) complex showed the highest levels of copper. Finally, the effect of the administration of [Cu(NN1)2](ClO4) for 15 days at 58 µg/g of fish was evaluated against F. psychrophilum, where a 75% survival was obtained during 20 days of challenge.

9.
Foods ; 11(8)2022 Apr 17.
Article in English | MEDLINE | ID: mdl-35454751

ABSTRACT

Foodborne diseases are extremely relevant and constitute an area of alert for public health authorities due to the high impact and number of people affected each year. The food industry has implemented microbiological control plans that ensure the quality and safety of its products; however, due to the high prevalence of foodborne diseases, the industry requires new microbiological control systems. One of the main causative agents of diseases transmitted by poultry meat is the bacterium Salmonella enterica. Disinfectants, antibiotics, and vaccines are used to control this pathogen. However, they have not been efficient in the total elimination of these bacteria, with numerous outbreaks caused by this bacterium observed today, in addition to the increase in antibiotic-resistant bacteria. The search for new technologies to reduce microbial contamination in the poultry industry continues to be a necessity and the use of lytic bacteriophages is one of the new solutions. In this study, 20 bacteriophages were isolated for Salmonella spp. obtained from natural environments and cocktails composed of five of them were designed, where three belonged to the Siphoviridae family and two to the Microviridae family. This cocktail was tested on chicken meat infected with Salmonella Typhimurium at 10 °C, where it was found that this cocktail was capable of decreasing 1.4 logarithmic units at 48 h compared to the control.

10.
Microorganisms ; 9(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34946021

ABSTRACT

Carotenoids are highly important in pigmentation, and its content in farmed crustaceans and fish correlates to their market value. These pigments also have a nutritional role in aquaculture where they are routinely added as a marine animal food supplement to ensure fish development and health. However, there is little information about carotenoids obtained from Antarctic bacteria and its use for pigmentation improvement and flesh quality in aquaculture. This study identified carotenoids produced by Antarctic soil bacteria. The pigmented strain (CN7) was isolated on modified Luria-Bertani (LB) media and incubated at 4 °C. This Gram-negative bacillus was identified by 16S rRNA analysis as Flavobacterium segetis. Pigment extract characterization was performed through high-performance liquid chromatography (HPLC) and identification with liquid chromatography-mass spectrometry (LC-MS). HPLC analyses revealed that this bacterium produces several pigments in the carotenoid absorption range (six peaks). LC-MS confirms the presence of one main peak corresponding to lutein or zeaxanthin (an isomer of lutein) and several other carotenoid pigments and intermediaries in a lower quantity. Therefore, we propose CN7 strain as an alternative model to produce beneficial carotenoid pigments with potential nutritional applications in aquaculture.

11.
Microorganisms ; 9(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34835497

ABSTRACT

Salmonella comprises over 2500 serotypes and foodborne contamination associated with this pathogen remains an important health concern worldwide. During the last decade, a shift in serotype prevalence has occurred as traditionally less prevalent serotypes are increasing in frequency of infections, especially those related to poultry meat contamination. S. Infantis is one of the major emerging serotypes, and these strains commonly display antimicrobial resistance and can persist despite cleaning protocols. Thus, this work aimed to isolate S. Infantis strains from a poultry meat farm in Santiago, Chile and to characterize genetic variations present in them. We determined their genomic and phenotypic profiles at different points along the production line. The results indicate that the strains encompass 853 polymorphic sites (core-SNPs) with isolates differing from one another by 0-347 core SNPs, suggesting variation among them; however, we found discrete correlations with the source of the sample in the production line. Furthermore, the pan-genome was composed of 4854 total gene clusters of which 2618 (53.9%) corresponds to the core-genome and only 181 (3.7%) are unique genes (those present in one particular strain). This preliminary analysis will enrich the surveillance of Salmonella, yet further studies are required to assess their evolution and phylogeny.

12.
Front Immunol ; 12: 696781, 2021.
Article in English | MEDLINE | ID: mdl-34475871

ABSTRACT

In salmon farming, viruses are responsible for outbreaks that produce significant economic losses for which there is a lack of control tools other than vaccines. Type I interferon has been successfully used for treating some chronic viral infections in humans. However, its application in salmonids depends on the proper design of a vehicle that allows its massive administration, ideally orally. In mammals, administration of recombinant probiotics capable of expressing cytokines has shown local and systemic therapeutic effects. In this work, we evaluate the use of Lactococcus lactis as a type I Interferon expression system in Atlantic salmon, and we analyze its ability to stimulate the antiviral immune response against IPNV, in vivo and in vitro. The interferon expressed in L. lactis, even though it was located mainly in the bacterial cytoplasm, was functional, stimulating Mx and PKR expression in CHSE-214 cells, and reducing the IPNV viral load in SHK-1 cells. In vivo, the oral administration of this L. lactis producer of Interferon I increases Mx and PKR expression, mainly in the spleen, and to a lesser extent, in the head kidney. The oral administration of this strain also reduces the IPNV viral load in Atlantic salmon specimens challenged with this pathogen. Our results show that oral administration of L. lactis producing Interferon I induces systemic effects in Atlantic salmon, allowing to stimulate the antiviral immune response. This probiotic could have effects against a wide variety of viruses that infect Atlantic salmon and also be effective in other salmonids due to the high identity among their type I interferons.


Subject(s)
Birnaviridae Infections/prevention & control , Fish Proteins/metabolism , Immunity, Innate , Infectious pancreatic necrosis virus/pathogenicity , Interferon Type I/metabolism , Lactococcus lactis/metabolism , Probiotics , Salmo salar/microbiology , Animals , Birnaviridae Infections/immunology , Birnaviridae Infections/microbiology , Birnaviridae Infections/virology , Cell Line , Fish Proteins/genetics , Fisheries , Host-Pathogen Interactions , Infectious pancreatic necrosis virus/growth & development , Infectious pancreatic necrosis virus/immunology , Interferon Type I/genetics , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Myxovirus Resistance Proteins/metabolism , Salmo salar/genetics , Salmo salar/immunology , Salmo salar/virology , Viral Load , eIF-2 Kinase/metabolism
13.
Front Immunol ; 12: 696803, 2021.
Article in English | MEDLINE | ID: mdl-34248997

ABSTRACT

Lactic acid bacteria are a powerful vehicle for releasing of cytokines and immunostimulant peptides at the gastrointestinal level after oral administration. However, its therapeutic application against pathogens that affect rainbow trout and Atlantic salmon has been little explored. Type II interferon in Atlantic salmon activates the antiviral response, protecting against viral infection, but its role against bacterial infection has not been tested in vivo. In this work, through the design of a recombinant lactic acid bacterium capable of producing Interferon gamma from Atlantic salmon, we explore its role against bacterial infection and the ability to stimulate systemic immune response after oral administration of the recombinant probiotic. Recombinant interferon was active in vitro, mainly stimulating IL-6 expression in SHK-1 cells. In vivo, oral administration of the recombinant probiotic produced an increase in IL-6, IFNγ and IL-12 in the spleen and kidney, in addition to stimulating the activity of lysozyme in serum. The challenge trials indicated that the administration of the IFNγ-producing probiotic doubled the survival in fish infected with F. psychrophilum. In conclusion, our results showed that the oral administration of lactic acid bacteria producing IFNγ managed to stimulate the immune response at a systemic level, conferring protection against pathogens, showing a biotechnological potential for its application in aquaculture.


Subject(s)
Fish Proteins/metabolism , Flavobacteriaceae Infections/prevention & control , Flavobacterium/pathogenicity , Interferon-gamma/metabolism , Lactococcus lactis/metabolism , Oncorhynchus mykiss/microbiology , Probiotics/administration & dosage , Administration, Oral , Animals , Cell Line , Fish Proteins/genetics , Fish Proteins/immunology , Flavobacteriaceae Infections/immunology , Flavobacteriaceae Infections/metabolism , Flavobacteriaceae Infections/microbiology , Flavobacterium/immunology , Host-Pathogen Interactions , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-12/metabolism , Interleukin-6/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/immunology , Oncorhynchus mykiss/metabolism , Phylogeny
14.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33766903

ABSTRACT

The volcanic soils of Chiloé Island, Chile, have physical and chemical characteristics that affect their productivity. We report here a 16S rRNA gene analysis that characterizes the predominant microbial communities in volcanic soils of Chiloé either in the presence or absence of fertilization. The major phyla identified were Proteobacteria, Acidobacteria, and Actinobacteria.

15.
IMA Fungus ; 12(1): 5, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33673862

ABSTRACT

Draft genomes of Penicillium roqueforti, Fusarium sororula, Chalaropsis populi, and Chrysoporthe puriensis are presented. Penicillium roqueforti is a model fungus for genetics, physiological and metabolic studies, as well as for biotechnological applications. Fusarium sororula and Chrysoporthe puriensis are important tree pathogens, and Chalaropsis populi is a soil-borne root-pathogen. The genome sequences presented here thus contribute towards a better understanding of both the pathogenicity and biotechnological potential of these species.

16.
Genes (Basel) ; 11(10)2020 10 20.
Article in English | MEDLINE | ID: mdl-33092062

ABSTRACT

Ceriporiopsis subvermispora is a white-rot fungus with a high specificity towards lignin mineralization when colonizing dead wood or lignocellulosic compounds. Its lignocellulose degrading system is formed by cellulose hydrolytic enzymes, manganese peroxidases, and laccases that catalyze the efficient depolymerization and mineralization of lignocellulose. To determine if this metabolic specialization has modified codon usage of the lignocellulolytic system, improving its adaptation to the fungal translational machine, we analyzed the adaptation to host codon usage (CAI), tRNA pool (tAI, and AAtAI), codon pair bias (CPB), and the number of effective codons (Nc). These indexes were correlated with gene expression of C. subvermispora, in the presence of glucose and Aspen wood. General gene expression was not correlated with the index values. However, in media containing Aspen wood, the induction of expression of lignocellulose-degrading genes, showed significantly (p < 0.001) higher values of CAI, AAtAI, CPB, tAI, and lower values of Nc than non-induced genes. Cellulose-binding proteins and manganese peroxidases presented the highest adaptation values. We also identified an expansion of genes encoding glycine and glutamic acid tRNAs. Our results suggest that the metabolic specialization to use wood as the sole carbon source has introduced a bias in the codon usage of genes involved in lignocellulose degradation. This bias reduces codon diversity and increases codon usage adaptation to the tRNA pool available in C. subvermispora. To our knowledge, this is the first study showing that codon usage is modified to improve the translation efficiency of a group of genes involved in a particular metabolic process.


Subject(s)
Codon Usage , Laccase/metabolism , Lignin/metabolism , Peroxidases/metabolism , Polyporales/metabolism , RNA, Transfer/genetics , Catalysis , Hydrolysis , Laccase/genetics , Peroxidases/genetics , Phylogeny , Polyporales/genetics , Polyporales/growth & development
17.
Microorganisms ; 8(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872599

ABSTRACT

Filifolinone is an aromatic geranyl derivative, a natural compound isolated from Heliotropum sclerocarpum, which has immunomodulatory effects on Atlantic salmon, upregulating cytokines involved in Th1-type responses through a mechanism that remains unknown. In this work, we determined whether the immunomodulatory effects of filifolinone depend on the host microbiotic composition. We evaluated the effect of filifolinone on immune genes and intestinal microbiotic composition of normal fish and fish previously treated with bacitracin/neomycin. Filifolinone induced the early expression of IFN-α1 and TGF-ß, followed by the induction of TNF-α, IL-1ß, and IFN-γ. A pre-treatment with antibiotics modified this effect, mainly changing the expression of IL-1ß and IFN-γ. The evaluation of microbial diversity shows that filifolinone modifies the composition of intestinal microbiota, increasing the abundance of immunostimulating organisms like yeast and firmicutes. We identified 69 operational taxonomic units (OTUs) associated with filifolinone-induced IFN-γ. Our results indicate that filifolinone stimulates the immune system in two ways, one dependent on fish microbiota and the other not. To our knowledge, this is the first report of microbiota-dependent immunostimulation in Salmonids.

18.
Molecules ; 25(14)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668579

ABSTRACT

A new copper (I) complex, [Cu(NN1)2](ClO4), was synthesized, where NN1 was a imine ligand 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one obtained by a derivatization of natural compound coumarin. The structural characterization in solution was done by NMR techniques, UV-Vis and cyclic voltammetry. The potential antibacterial effect of [Cu(NN1)2](ClO4), was assessed for F. psychrophilum isolated 10094. F. psychrophilum is a Gram-negative bacterium which causes diseases such as bacterial cold-water disease and rainbow trout fry syndrome, causing large economic losses in the freshwater salmonid aquaculture industry. This complex show to have antibacterial activity against F. psychrophilum 10094 at non-cytotoxic concentration in cell line derived from trout (F. psychrophilum 10094 IC50 16.0 ± 0.9; RT-GUT IC50 53.0 ± 3.1 µg/mL).


Subject(s)
Anti-Bacterial Agents/pharmacology , Copper/pharmacology , Coumarins/pharmacology , Fish Diseases/microbiology , Flavobacterium/drug effects , Animals , Cell Line , Oncorhynchus mykiss , Salmon
19.
Microbiol Resour Announc ; 9(12)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32193245

ABSTRACT

Rainbow trout that were resistant or susceptible to Flavobacterium psychrophilum infection were compared with respect to their microbial composition by using 16S rRNA V3-V4 sequencing. The differences occurred in gills, where resistant fish displayed a greater abundance of the phylum Proteobacteria and a smaller proportion of Firmicutes relative to those of susceptible fish.

20.
Front Microbiol ; 11: 607693, 2020.
Article in English | MEDLINE | ID: mdl-33519754

ABSTRACT

Codon usage bias (the preferential use of certain synonymous codons (optimal) over others is found at the organism level (intergenomic) within specific genomes (intragenomic) and even in certain genes. Whether it is the result of genetic drift due to GC/AT content and/or natural selection is a topic of intense debate. Preferential codons are mostly found in genes encoding highly-expressed proteins, while lowly-expressed proteins usually contain a high proportion of rare (lowly-represented) codons. While optimal codons are decoded by highly expressed tRNAs, rare codons are usually decoded by lowly-represented tRNAs. Whether rare codons play a role in controlling the expression of lowly- or temporarily-expressed proteins is an open question. In this work we approached this question using two strategies, either by replacing rare glycine codons with optimal counterparts in the gene that encodes the cell cycle protein Cdc13, or by overexpression the tRNA Gly that decodes rare codons from the fission yeast, Schizosaccharomyces pombe. While the replacement of synonymous codons severely affected cell growth, increasing tRNA levels affected the aggregation status of Cdc13 and cell division. These lead us to think that rare codons in lowly-expressed cyclin proteins are crucial for cell division, and that the overexpression of tRNA that decodes rare codons affects the expression of proteins containing these rare codons. These codons may be the result of the natural selection of codons in genes that encode lowly-expressed proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...