Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Rep ; 14(1): 1735, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242903

ABSTRACT

The use of various blood flow control methods in neurovascular interventions is crucial for reducing postoperative complications. Neurosurgeons worldwide use different methods, such as contact Dopplerography, intraoperative indocyanine videoangiography (ICG) video angiography, fluorescein angiography, flowmetry, intraoperative angiography, and direct angiography. However, there is no noninvasive method that can assess the presence of blood flow in the vessels of the brain without the introduction of fluorescent substances throughout the intervention. The real-time laser-speckle contrast imaging (LSCI) method was studied for its effectiveness in controlling blood flow in standard cerebrovascular surgery cases in rat common carotid arteries, such as proximal occlusion, trapping, reperfusion, anastomosis, and intraoperative vessel thrombosis. The real-time LSCI method is a promising method for use in neurosurgical practice. This approach allows timely diagnosis of intraoperative disturbance of blood flow in vessels in cases of clip occlusion or thrombosis. Additionally, LSCI allows us to reliably confirm the functioning of the anastomosis and reperfusion after removal of the clips and thrombolysis in real time. An unresolved limitation of the method is noise from movements, but this does not reduce the value of the method. Additional research is required to improve the quality of the data obtained.


Subject(s)
Indocyanine Green , Thrombosis , Rats , Animals , Laser Speckle Contrast Imaging , Coloring Agents , Fluorescein Angiography
2.
Micromachines (Basel) ; 14(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37374691

ABSTRACT

Currently, an urgent need in the field of wearable electronics is the development of flexible sensors that can be attached to the human body to monitor various physiological indicators and movements. In this work, we propose a method for forming an electrically conductive network of multi-walled carbon nanotubes (MWCNT) in a matrix of silicone elastomer to make stretchable sensors sensitive to mechanical strain. The electrical conductivity and sensitivity characteristics of the sensor were improved by using laser exposure, through the effect of forming strong carbon nanotube (CNT) networks. The initial electrical resistance of the sensors obtained using laser technology was ~3 kOhm (in the absence of deformation) at a low concentration of nanotubes of 3 wt% in composition. For comparison, in a similar manufacturing process, but without laser exposure, the active material had significantly higher values of electrical resistance, which was ~19 kOhm in this case. The laser-fabricated sensors have a high tensile sensitivity (gauge factor ~10), linearity of >0.97, a low hysteresis of 2.4%, tensile strength of 963 kPa, and a fast strain response of 1 ms. The low Young's modulus values of ~47 kPa and the high electrical and sensitivity characteristics of the sensors made it possible to fabricate a smart gesture recognition sensor system based on them, with a recognition accuracy of ~94%. Data reading and visualization were performed using the developed electronic unit based on the ATXMEGA8E5-AU microcontroller and software. The obtained results open great prospects for the application of flexible CNT sensors in intelligent wearable devices (IWDs) for medical and industrial applications.

3.
Polymers (Basel) ; 15(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37376383

ABSTRACT

Currently, the preparation of actuators based on ionic electroactive polymers with a fast response is considered an urgent topic. In this article, a new approach to activate polyvinyl alcohol (PVA) hydrogels by applying an AC voltage is proposed. The suggested approach involves an activation mechanism in which the PVA hydrogel-based actuators undergo extension/contraction (swelling/shrinking) cycles due to the local vibration of the ions. The vibration does not cause movement towards the electrodes but results in hydrogel heating, transforming the water molecules into a gaseous state and causing the actuator to swell. Two types of linear actuators based on PVA hydrogels were prepared, using two types of reinforcement for the elastomeric shell (spiral weave and fabric woven braided mesh). The extension/contraction of the actuators, activation time, and efficiency were studied, considering the PVA content, applied voltage, frequency, and load. It was found that the overall extension of the spiral weave-reinforced actuators under a load of ~20 kPa can reach more than 60%, with an activation time of ~3 s by applying an AC voltage of 200 V and a frequency of 500 Hz. Conversely, the overall contraction of the actuators reinforced by fabric woven braided mesh under the same conditions can reach more than 20%, with an activation time of ~3 s. Moreover, the activation force (swelling load) of the PVA hydrogels can reach up to 297 kPa. The developed actuators have broad applications in medicine, soft robotics, the aerospace industry, and artificial muscles.

4.
Polymers (Basel) ; 15(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37376401

ABSTRACT

Elastomeric materials have great application potential in actuator design and soft robot development. The most common elastomers used for these purposes are polyurethanes, silicones, and acrylic elastomers due to their outstanding physical, mechanical, and electrical properties. Currently, these types of polymers are produced by traditional synthetic methods, which may be harmful to the environment and hazardous to human health. The development of new synthetic routes using green chemistry principles is an important step to reduce the ecological footprint and create more sustainable biocompatible materials. Another promising trend is the synthesis of other types of elastomers from renewable bioresources, such as terpenes, lignin, chitin, various bio-oils, etc. The aim of this review is to address existing approaches to the synthesis of elastomers using "green" chemistry methods, compare the properties of sustainable elastomers with the properties of materials produced by traditional methods, and analyze the feasibility of said sustainable elastomers for the development of actuators. Finally, the advantages and challenges of existing "green" methods of elastomer synthesis will be summarized, along with an estimation of future development prospects.

5.
Membranes (Basel) ; 13(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37103830

ABSTRACT

Currently, the development of stable and antithrombogenic coatings for cardiovascular implants is socially important. This is especially important for coatings exposed to high shear stress from flowing blood, such as those on ventricular assist devices. A method of layer-by-layer formation of nanocomposite coatings based on multi-walled carbon nanotubes (MWCNT) in a collagen matrix is proposed. A reversible microfluidic device with a wide range of flow shear stresses has been developed for hemodynamic experiments. The dependence of the resistance on the presence of a cross-linking agent for collagen chains in the composition of the coating was demonstrated. Optical profilometry determined that collagen/c-MWCNT and collagen/c-MWCNT/glutaraldehyde coatings obtained sufficiently high resistance to high shear stress flow. However, the collagen/c-MWCNT/glutaraldehyde coating was almost twice as resistant to a phosphate-buffered solution flow. A reversible microfluidic device made it possible to assess the level of thrombogenicity of the coatings by the level of blood albumin protein adhesion to the coatings. Raman spectroscopy demonstrated that the adhesion of albumin to collagen/c-MWCNT and collagen/c-MWCNT/glutaraldehyde coatings is 1.7 and 1.4 times lower than the adhesion of protein to a titanium surface, widely used for ventricular assist devices. Scanning electron microscopy and energy dispersive spectroscopy determined that blood protein was least detected on the collagen/c-MWCNT coating, which contained no cross-linking agent, including in comparison with the titanium surface. Thus, a reversible microfluidic device is suitable for preliminary testing of the resistance and thrombogenicity of various coatings and membranes, and nanocomposite coatings based on collagen and c-MWCNT are suitable candidates for the development of cardiovascular devices.

6.
World Neurosurg ; 175: e542-e573, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087036

ABSTRACT

OBJECTIVE: Population screening for aneurysms in patients with risk factors and preventive surgical treatment are beneficial according to numerous studies. One of the most significant risk factors is heredity, namely, the presence of first-degree relatives (FDR) with aneurysmal subarachnoid hemorrhage (aSAH). Nevertheless, there are still no generally accepted approaches or evidence bases regarding the benefits of the aneurysm screening strategy. METHODS: Mathematical modeling of the dynamics of aneurysm development in the population was carried out using an algorithm implementing a discrete Markov's chain. To implement the model, all probabilities of events and distributions are taken from available literature sources. Three-dimensional time of flight noncontrast magnetic resonance angiography was chosen as a screening method. Patients underwent preventive surgical treatment if an aneurysm was detected. RESULTS: Screening and preventive treatment in the general population reduces the prevalence of aneurysms by 1.74% (3.44% in the FDR group) and the prevalence of aSAH by 14.36% (37.48% in the FDR group). Mortality due to aSAH was reduced by 14.44%. The number of disabilities also decreases. The occurrence of deep disability was reduced by 20.2% in the FDR group. Economic analysis of the part of the population consisting of FDRs showed annual savings of ies also decr CONCLUSIONS: The mathematical model demonstrated that screening and preventive treatment of cerebral aneurysms can reduce aSAH-associated morbidity and mortality. In the FDR group, there was decrease in the prevalence of aSAH and decrease in associated mortality. Screening for cerebral aneurysms is cost-effective.


Subject(s)
Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , Intracranial Aneurysm/genetics , Intracranial Aneurysm/surgery , Intracranial Aneurysm/diagnosis , Subarachnoid Hemorrhage/epidemiology , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/surgery , Magnetic Resonance Angiography , Risk Factors , Mass Screening/adverse effects
7.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772060

ABSTRACT

Preparing high-strength polymeric materials using an orientation drawing process is considered one of the most urgent topics in the modern world. Graphene nanoplates/polyaniline (GNP/PANI) were added to the commercial grade UHMWPE (GUR 4120) matrix as a filler with antifriction properties. The effect of GNP/PANI addition on the structure, the orientation process, the void formation (cavitation), the mechanical, and tribological properties was studied using differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and scanning electron microscopy (SEM). The paper's findings indicated an increase in the cavitation effect of 120-320% after the addition of GNP/PANI to the UHMWPE polymer matrix. This increase, during the process of the oriented films' thermal orientation hardening, led, in turn, to a decrease in the tensile strength during the process of the oriented films' thermal orientation hardening. Furthermore, the decrease in the coefficient of friction in the best samples of oriented UHMWPE films was two times greater, and the increase in wear resistance was more than an order of magnitude. This process was part of the orientation hardening process for the UHMWPE films containing PE-wax as an intermolecular lubricant, as well as the presence of GNP/PANI in the material, which have a high resistance to abrasive wear.

8.
World Neurosurg ; 171: 35-40, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36526222

ABSTRACT

BACKGROUND: Intraoperative study of blood flow in the brain vessels is among the most critical topics of modern neurosurgery. One of the promising methods for intraoperative monitoring of blood flow is laser speckle contrast imaging (LSCI). This systematic review aims to analyze the experience of using intraoperative LSCI in neurosurgical interventions. METHODS: The literature search was carried out in the PubMed and Web of Science databases using the keywords "Laser-Speckle," "Laser Speckle," "Laser speckle contrast imaging," and "LSCI." We allowed the search to include the following criteria: 1) publication in the English language, 2) full access to the article, 3) information about the method of treatment, and 4) the results presented for at least one patient. RESULTS: The initial search resulted in the detection of 508 publications, of which 476 were eliminated during the initial assessment of titles and abstracts. Two more articles were excluded due to the lack of data in the English language. Twenty articles were found to be focused on nonhuman studies and therefore were excluded. In three more studies treatment of non-neurosurgical patients was reported. The final analysis included 8 articles with 102 patients overall. CONCLUSIONS: LSCI is a promising intraoperative method for intraoperative cerebral blood flow assessing. This method offers several advantages over other modalities. The experience of use is limited to a small number of case series. Further investigation of the method and its implementation in clinical practice is needed.


Subject(s)
Laser Speckle Contrast Imaging , Neurosurgery , Humans , Laser-Doppler Flowmetry/methods , Hemodynamics , Neurosurgical Procedures , Regional Blood Flow
9.
J Biophotonics ; 16(1): e202200222, 2023 01.
Article in English | MEDLINE | ID: mdl-36056822

ABSTRACT

We examined hematological changes influenced by the experimental hypervitaminosis A. The 3D confocal optical profilometer was applied for assessment of the erythrocytes' membrane structural changes influenced by an overdose of vitamin A. The blood smears were evaluated in terms of alterations of geometrical and optical parameters of erythrocytes for two groups of animals: oil base and retinol palmitate (n = 9 animals for each group). The results demonstrate that an overdose of retinol palmitate causes changes in the torus curvature and pallor of discocytes, their surface area and volume. The observed structural malformations of the shape of red blood cells become visible at the earlier preclinical stage of changes in animal state and behavior. With this in mind, the results of the study open a new area of research in the certain dysfunction diagnosis of red blood cells and have a great potential in the further development of new curative protocols.


Subject(s)
Diterpenes , Erythrocyte Membrane , Animals , Erythrocytes , Retinyl Esters/analysis
10.
Int Orthop ; 47(2): 393-403, 2023 02.
Article in English | MEDLINE | ID: mdl-36369394

ABSTRACT

PURPOSE: This study aims to describe and assess the current stage of the artificial intelligence (AI) technology integration in preventive orthopaedics of the knee and hip joints. MATERIALS AND METHODS: The study was conducted in strict compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Literature databases were searched for articles describing the development and validation of AI models aimed at diagnosing knee or hip joint pathologies or predicting their development or course in patients. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and QUADAS-AI tools. RESULTS: 56 articles were found that meet all the inclusion criteria. We identified two problems that block the full integration of AI into the routine of an orthopaedic physician. The first of them is related to the insufficient amount, variety and quality of data for training, and validation and testing of AI models. The second problem is the rarity of rational evaluation of models, which is why their real quality cannot always be evaluated. CONCLUSION: The vastness and relevance of the studied topic are beyond doubt. Qualitative and optimally validated models exist in all four scopes considered. Additional optimization and confirmation of the models' quality on various datasets are the last technical stumbling blocks for creating usable software and integrating them into the routine of an orthopaedic physician.


Subject(s)
Orthopedic Procedures , Orthopedics , Humans , Artificial Intelligence , Hip Joint , Software
11.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430272

ABSTRACT

Osteoarthritis (OA) affects over 250 million people worldwide and despite various existing treatment strategies still has no cure. It is a multifactorial disease characterized by cartilage loss and low-grade synovial inflammation. Focusing on these two targets together could be the key to developing currently missing disease-modifying OA drugs (DMOADs). This review aims to discuss the latest cell-free techniques applied in cartilage tissue regeneration, since they can provide a more controllable approach to inflammation management than the cell-based ones. Scaffolds, extracellular vesicles, and nanocarriers can be used to suppress inflammation, but they can also act as immunomodulatory agents. This is consistent with the latest tissue engineering paradigm, postulating a moderate, controllable inflammatory reaction to be beneficial for tissue remodeling and successful regeneration.


Subject(s)
Extracellular Vesicles , Osteoarthritis , Humans , Inflammation/drug therapy , Osteoarthritis/drug therapy , Nanotechnology , Cartilage
12.
Polymers (Basel) ; 14(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080587

ABSTRACT

Polymer smart materials are a broad class of polymeric materials that can change their shapes, mechanical responses, light transmissions, controlled releases, and other functional properties under external stimuli. A good understanding of the aspects controlling various types of shape memory phenomena in shape memory polymers (SMPs), such as polymer structure, stimulus effect and many others, is not only important for the preparation of new SMPs with improved performance, but is also useful for the optimization of the current ones to expand their application field. In the present era, simple understanding of the activation mechanisms, the polymer structure, the effect of the modification of the polymer structure on the activation process using fillers or solvents to develop new reliable SMPs with improved properties, long lifetime, fast response, and the ability to apply them under hard conditions in any environment, is considered to be an important topic. Moreover, good understanding of the activation mechanism of the two-way shape memory effect in SMPs for semi-crystalline polymers and liquid crystalline elastomers is the main key required for future investigations. In this article, the principles of the three basic types of external stimuli (heat, chemicals, light) and their key parameters that affect the efficiency of the SMPs are reviewed in addition to several prospective applications.

13.
Nanomaterials (Basel) ; 12(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014677

ABSTRACT

A technology for the formation and bonding with a substrate of hybrid carbon nanostructures from single-walled carbon nanotubes (SWCNT) and reduced graphene oxide (rGO) by laser radiation is proposed. Molecular dynamics modeling by the real-time time-dependent density functional tight-binding (TD-DFTB) method made it possible to reveal the mechanism of field emission centers formation in carbon nanostructures layers. Laser radiation stimulates the formation of graphene-nanotube covalent contacts and also induces a dipole moment of hybrid nanostructures, which ensures their orientation along the force lines of the radiation field. The main mechanical and emission characteristics of the formed hybrid nanostructures were determined. By Raman spectroscopy, the effect of laser radiation energy on the defectiveness of all types of layers formed from nanostructures was determined. Laser exposure increased the hardness of all samples more than twice. Maximum hardness was obtained for hybrid nanostructure with a buffer layer (bl) of rGO and the main layer of SWCNT-rGO(bl)-SWCNT and was 54.4 GPa. In addition, the adhesion of rGO to the substrate and electron transport between the substrate and rGO(bl)-SWCNT increased. The rGO(bl)-SWCNT cathode with an area of ~1 mm2 showed a field emission current density of 562 mA/cm2 and stability for 9 h at a current of 1 mA. The developed technology for the formation of hybrid nanostructures can be used both to create high-performance and stable field emission cathodes and in other applications where nanomaterials coating with good adhesion, strength, and electrical conductivity is required.

14.
Nanomaterials (Basel) ; 12(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35808110

ABSTRACT

Unlike traditional actuators, such as piezoelectric ceramic or metallic actuators, polymer actuators are currently attracting more interest in biomedicine due to their unique properties, such as light weight, easy processing, biodegradability, fast response, large active strains, and good mechanical properties. They can be actuated under external stimuli, such as chemical (pH changes), electric, humidity, light, temperature, and magnetic field. Electroactive polymers (EAPs), called 'artificial muscles', can be activated by an electric stimulus, and fixed into a temporary shape. Restoring their permanent shape after the release of an electrical field, electroactive polymer is considered the most attractive actuator type because of its high suitability for prosthetics and soft robotics applications. However, robust control, modeling non-linear behavior, and scalable fabrication are considered the most critical challenges for applying the soft robotic systems in real conditions. Researchers from around the world investigate the scientific and engineering foundations of polymer actuators, especially the principles of their work, for the purpose of a better control of their capability and durability. The activation method of actuators and the realization of required mechanical properties are the main restrictions on using actuators in real applications. The latest highlights, operating principles, perspectives, and challenges of electroactive materials (EAPs) such as dielectric EAPs, ferroelectric polymers, electrostrictive graft elastomers, liquid crystal elastomers, ionic gels, and ionic polymer-metal composites are reviewed in this article.

15.
Bioengineering (Basel) ; 9(6)2022 May 29.
Article in English | MEDLINE | ID: mdl-35735481

ABSTRACT

Laser soldering is a current biophotonic technique for the surgical recovery of the integrity of soft tissues. This technology involves the use of a device providing laser exposure to the cut edges of the wound with a solder applied. The proposed solder consisted of an aqueous dispersion of biopolymer albumin (25 wt.%), single-walled carbon nanotubes (0.1 wt.%) and exogenous indocyanine green chromophore (0.1 wt.%). Under laser exposure, the dispersion transforms into a nanocomposite due to the absorption of radiation and its conversion into heat. The nanocomposite is a frame structure of carbon nanotubes in a biopolymer matrix, which provides adhesion of the wound edges and the formation of a strong laser weld. A new laser device based on a diode laser (808 nm) has been developed to implement the method. The device has a temperature feedback system based on a bolometric infrared matrix sensor. The system determines the hottest area of the laser weld and adjusts the current supplied to the diode laser to maintain the preset laser heating temperature. The laser soldering technology made it possible to heal linear defects (cuts) in the skin of laboratory animals (rabbits) without the formation of a fibrotic scar compared to the control (suture material). The combined use of a biopolymer nanocomposite solder and a laser device made it possible to achieve a tensile strength of the laser welds of 4 ± 0.4 MPa. The results of the experiment demonstrated that the addition of single-walled carbon nanotubes to the solder composition leads to an increase in the ultimate tensile strength of the laser welds by 80%. The analysis of regenerative and morphological features in the early stages (1-3 days) after surgery revealed small wound gaps, a decrease in inflammation, the absence of microcirculatory disorders and an earlier epithelization of laser welds compared to the control. On the 10th day after the surgical operation, the laser weld was characterized by a thin cosmetic scar and a continuous epidermis covering the defect. An immunohistochemical analysis proved the absence of myofibroblasts in the area of the laser welds.

16.
J Funct Biomater ; 13(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35076513

ABSTRACT

BACKGROUND: Currently, left ventricular assist devices (LVADs) are a successful surgical treatment for patients with end-stage heart failure on the waiting list or with contraindicated heart transplantation. In Russia, Sputnik 1 LVAD was also successfully introduced into clinical practice as a bridge-to-transplant and a destination therapy device. Development of Sputnik 2 LVAD was aimed at miniaturization to reduce invasiveness, optimize hemocompatibility, and improve versatility for patients of various sizes. METHODS: We compared hemolysis level in flow path of the Sputnik LVADs and investigated design aspects influencing other types of blood damage, using predictions of computational fluid dynamics (CFD) and experimental assessment. The investigated operating point was a flow rate of 5 L/min and a pressure head of 100 mm Hg at an impeller rotational speed of 9100 min-1. RESULTS: Mean hemolysis indices predicted with CFD were 0.0090% in the Sputnik 1 and 0.0023% in the Sputnik 2. Averaged values of normalized index of hemolysis obtained experimentally for the Sputnik 1 and the Sputnik 2 were 0.011 ± 0.003 g/100 L and 0.004 ± 0.002 g/100 L, respectively. CONCLUSIONS: Obtained results indicate obvious improvements in hemocompatibility and sufficiently satisfy the determined miniaturization aim for the Sputnik 2 LVAD development.

17.
Bioengineering (Basel) ; 8(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34940368

ABSTRACT

Hemocompatibility of biomaterials in contact with the blood of patients is a prerequisite for the short- and long-term applications of medical devices such as cardiovascular stents, artificial heart valves, ventricular assist devices, catheters, blood linings and extracorporeal devices such as artificial kidneys (hemodialysis), extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass. Although lower blood compatibility of materials and devices can be handled with systemic anticoagulation, its side effects, such as an increased bleeding risk, make materials that have a better hemocompatibility highly desirable, particularly in long-term applications. This review provides a short overview on the basic mechanisms of blood coagulation including plasmatic coagulation and blood platelets, as well as the activation of the complement system. Furthermore, a survey on concepts for tailoring the blood response of biomaterials to improve the hemocompatibility of medical devices is given which covers different approaches that either inhibit interaction of material surfaces with blood components completely or control the response of the coagulation system, blood platelets and leukocytes.

18.
IEEE Trans Biomed Circuits Syst ; 15(3): 629-641, 2021 06.
Article in English | MEDLINE | ID: mdl-34232890

ABSTRACT

Recently, an electrical stimulation of the paralyzed muscle, as a potential therapy for restoring function of a denervated muscle system, has been debated as an innovative treatment in the management of patients with laryngeal paralysis. Numerous studies in acute and chronic animal models have demonstrated that electrical stimulation of the paralyzed posterior cricoarytenoideus muscle (PCA) offers an approach to induce vocal fold abduction and restore ventilation through the glottis. The study aims to test applicability of the controlled opening of the rima glottides via direct electrical stimulation of the posterior cricoarytenoideus muscle. We developed for this purpose a novel instrument system for the controlled larynx nerve stimulation. An acute experiment on the 4 years old pig showed effectiveness of the engineered stimulator. The controlled opening of rima glottidis of both posterior cricoarytenoid muscles and afterwards of both PCA muscle contraction were observed as a result of the electrical stimulation with the applied current in the range of 0.1-3 mA and pulse width of 1 ms and 10 ms. Performed research indicates a large potential of the novel nerve stimulator for the human larynx stimulation.


Subject(s)
Electric Stimulation Therapy , Vocal Cord Paralysis , Animals , Electric Stimulation , Electromyography , Humans , Laryngeal Muscles , Muscle Contraction , Swine , Vocal Cord Paralysis/therapy
19.
Comput Methods Biomech Biomed Engin ; 24(6): 653-662, 2021 May.
Article in English | MEDLINE | ID: mdl-33427490

ABSTRACT

The decompensated univentricular circulation is identified as one of the most challenging conditions and the application of the mechanical circulatory support (MCS) devices is proposed as therapeutic option for Fontan failure. Modelling methodologies are reported to identify the optimized types, extent and duration of required hemodynamic support using MCS. The specific parameters of device-body interaction during support of failing Fontan circulation within the design points of dedicated pediatric ventricular assist devices has not been previously defined. In this work, we introduce a mathematical model developed to simulate the interaction between the Fontan single-ventricular circulation and a constant-flow pediatric ventricular assist device (VAD) Sputnik. The interaction is studied at a pump rotor speed of 5000-9000 rpm. This simulation demonstrates that the pump replacing pulmonary ventricle of the heart creates necessary pressure differential between the systemic veins (7 mmHg) and the pulmonary artery (17.3 mmHg). Moreover, it increases the venous return that, according to the Frank-Starling mechanism, increases the stroke volume up to 32 ml/bpm (26 ml/bpm - without using a pump). For the first time, a simulation for the pediatric VAD Sputnik has been carried out. The simulation results confirm pediatric VAD Sputnik can be a possible tool to normalize the Fontan circulation in pediatric patients.


Subject(s)
Fontan Procedure , Heart-Assist Devices , Models, Cardiovascular , Child, Preschool , Computer Simulation , Coronary Circulation/physiology , Hemodynamics , Humans , Models, Theoretical , Pressure , Pulmonary Artery/physiopathology , Veins/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...