Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet World ; 11(10): 1516-1525, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30532511

ABSTRACT

AIM: The study was undertaken to isolate infectious bursal disease virus (IBDV) from clinical cases in broiler and cockerel flocks of Maharashtra state, India, and its molecular epidemiological investigation. MATERIALS AND METHODS: The morbid bursal tissues were collected from flocks suspected for IBD. The samples were subjected for virus adaptation in primary chicken embryo fibroblast (CEF) cells followed by confirmation by reverse transcription polymerase chain reaction (RT-PCR) for partial VP2 sequence and phylogenetic analysis. RESULTS: The isolation of IBDV from field samples took seven blind passages for adaptation in CEF. The cytopathic effects included rounding, aggregation, vacuolation, and detachment of the cells. The RT-PCR showed amplification of 627 bp amplicon specific to the primers for VP2 gene fragment which confirmed successful adaptation and isolation of IBDV using CEF. The nucleotide and deduced amino acids based on phylogeny clustered the current isolate in a distinct clade with classical virulent and antigenic variants. It showed divergence from very virulent (vv) and vaccine strains of Indian origin. The isolate showed unique amino acid substitution at A329V as compared to all other IBDVs. The variation in key amino acids was reported at A222, I242, Q249, Q253, A256, T270, N279, T284, I286, L294, N299, and V329. It shared conserved amino acids at position A222, I242, and Q253 as reported in vvIBDV isolates. However, the amino acids reported at position T270, N279, T284, L294, and N299 are conserved in classic, antigenic variant and attenuated strains of IBDV. The amino acids at positions N279 and T284 indicated that the isolate has key amino acids for cell culture replication. CONCLUSION: The IBDV field isolate does not reveal the full nucleotide sequence signature of vvIBDV as well as vaccine strains. Hence, we can conclude that it might not belong to vvIBDVs of Indian origin and the vaccine strain used in the region. This may be suggestive of the evolution of the IBDV in the field due to the coexistence of circulating field strains and live attenuated hot strains, resulting into morbidity and mortality, warranting the need for safer protective vaccines, and implementation of stringent biosecurity measures to minimize loss to farmers.

2.
Arch Virol ; 155(1): 89-95, 2010.
Article in English | MEDLINE | ID: mdl-19936612

ABSTRACT

Sequence analysis of segment 2 (seg-2) of three Indian bluetongue virus (BTV) isolates, Dehradun, Rahuri and Bangalore revealed 99% nucleotide identity amongst them and 96% with the reference BTV 23. Phylogenetic analysis grouped the isolates in 'nucleotype D'. The deduced amino acid (aa) sequence of the Bangalore isolate showed a high variability in a few places compared to other isolates. B-cell epitope analyses predicted an epitope that is present exclusively in the Bangalore isolate. Two-way cross serum neutralization confirmed that Bangalore isolate is antigenically different from the other two isolates. The results of this study suggest that these three isolates are VP2 variants of BTV 23. This signifies that non-cross-neutralizing variants of the same BTV serotype should be included in vaccine preparation.


Subject(s)
Bluetongue virus/classification , Bluetongue virus/isolation & purification , Bluetongue/virology , Capsid Proteins/genetics , Animals , Bluetongue/immunology , Bluetongue virus/genetics , Bluetongue virus/immunology , Capsid Proteins/immunology , Molecular Sequence Data , Neutralization Tests , Phylogeny , RNA, Viral/genetics , Sheep
3.
Immunogenetics ; 61(3): 231-40, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19198828

ABSTRACT

MicroRNAs (miRNAs) are small (approximately 19-24 nt) noncoding RNAs that participate in posttranscriptionally regulating gene expression. MicroRNAs display very dynamic expression patterns with many being expressed in a temporal as well as a spatial manner. Immune genes have been shown to have a higher propensity for miRNA target sites compared to the rest of the genome, thus suggesting that miRNA are key regulators of the immune system. To better understand the involvement of miRNA in the immune system, a comprehensive profile of miRNA expression in the immune organs will be necessary. As a first step toward building such a profile, we pyrosequenced four small RNA libraries derived from the spleen and the bursa of Fabricius of embryonic chicks at days 15 and 20 of development. A total of 90,322 sequence reads were obtained, among which 44,387 reads represented known chicken miRNAs, 3,503 reads were not found in the Gallus gallus database but were homologs of miRBase miRNAs from other species, and 2,023 reads represented potentially novel chicken miRNAs that have not previously been identified. Many miRNAs identified in our work have been shown to be involved in regulating immune genes in other vertebrate species. For example, the miRNAs miR-221 and miR-222, which are known regulators of lymphocyte differentiation, were identified in our studies and appeared to be differentially expressed among the libraries. Overall, our results show that many of the identified miRNAs display dynamic expression patterns, suggesting that these miRNAs play diverse roles in the immune system.


Subject(s)
Bursa of Fabricius/metabolism , Chick Embryo/immunology , MicroRNAs/metabolism , Spleen/metabolism , Animals , Base Sequence , Bursa of Fabricius/immunology , Gene Expression Regulation , Gene Library , MicroRNAs/chemistry , MicroRNAs/genetics , Molecular Sequence Data , Specific Pathogen-Free Organisms , Spleen/immunology
4.
Virus Genes ; 29(1): 73-80, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15215685

ABSTRACT

Sheep pox and Goat pox are highly contagious viral diseases of small ruminants. These diseases were earlier thought to be caused by a single species of virus, as they are serologically indistinguishable. P32, one of the major immunogenic genes of Capripoxvirus, was isolated and Sequenced from two Indian isolates of goat poxvirus (GPV) and a vaccine strain of sheep poxvirus (SPV). The sequences were compared with other P32 sequences of capripoxviruses available in the database. Sequence analysis revealed that sheep pox and goat poxviruses share 97.5 and 94.7% homology at nucleotide and amino acid level, respectively. A major difference between them is the presence of an additional aspartic acid at 55th position of P32 of sheep poxvirus that is absent in both goat poxvirus and lumpy skin disease virus. Further, six unique neutral nucleotide substitutions were observed at positions 77, 275, 403, 552, 867 and 964 in the sequence of goat poxvirus, which can be taken as GPV signature residues. Similar unique nucleotide signatures could be identified in SPV and LSDV sequences also. Phylogenetic analysis showed that members of the Capripoxvirus could be delineated into three distinct clusters of GPV, SPV and LSDV based on the P32 genomic sequence. Using this information, a PCR-RFLP method has been developed for unequivocal genomic differentiation of SPV and GPV.


Subject(s)
Capripoxvirus/classification , Goats/virology , Nuclear Proteins/genetics , Poxviridae Infections/veterinary , Sequence Analysis, DNA , Sheep/virology , Amino Acid Sequence , Animals , Capripoxvirus/genetics , Goat Diseases/virology , Molecular Sequence Data , Nuclear Proteins/chemistry , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Poxviridae Infections/virology , Sheep Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...