Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 25: e39736, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713261

ABSTRACT

BACKGROUND: Literature reviews (LRs) identify, evaluate, and synthesize relevant papers to a particular research question to advance understanding and support decision-making. However, LRs, especially traditional systematic reviews, are slow, resource-intensive, and become outdated quickly. OBJECTIVE: LiteRev is an advanced and enhanced version of an existing automation tool designed to assist researchers in conducting LRs through the implementation of cutting-edge technologies such as natural language processing and machine learning techniques. In this paper, we present a comprehensive explanation of LiteRev's capabilities, its methodology, and an evaluation of its accuracy and efficiency to a manual LR, highlighting the benefits of using LiteRev. METHODS: Based on the user's query, LiteRev performs an automated search on a wide range of open-access databases and retrieves relevant metadata on the resulting papers, including abstracts or full texts when available. These abstracts (or full texts) are text processed and represented as a term frequency-inverse document frequency matrix. Using dimensionality reduction (pairwise controlled manifold approximation) and clustering (hierarchical density-based spatial clustering of applications with noise) techniques, the corpus is divided into different topics described by a list of the most important keywords. The user can then select one or several topics of interest, enter additional keywords to refine its search, or provide key papers to the research question. Based on these inputs, LiteRev performs a k-nearest neighbor (k-NN) search and suggests a list of potentially interesting papers. By tagging the relevant ones, the user triggers new k-NN searches until no additional paper is suggested for screening. To assess the performance of LiteRev, we ran it in parallel to a manual LR on the burden and care for acute and early HIV infection in sub-Saharan Africa. We assessed the performance of LiteRev using true and false predictive values, recall, and work saved over sampling. RESULTS: LiteRev extracted, processed, and transformed text into a term frequency-inverse document frequency matrix of 631 unique papers from PubMed. The topic modeling module identified 16 topics and highlighted 2 topics of interest to the research question. Based on 18 key papers, the k-NNs module suggested 193 papers for screening out of 613 papers in total (31.5% of the whole corpus) and correctly identified 64 relevant papers out of the 87 papers found by the manual abstract screening (recall rate of 73.6%). Compared to the manual full text screening, LiteRev identified 42 relevant papers out of the 48 papers found manually (recall rate of 87.5%). This represents a total work saved over sampling of 56%. CONCLUSIONS: We presented the features and functionalities of LiteRev, an automation tool that uses natural language processing and machine learning methods to streamline and accelerate LRs and support researchers in getting quick and in-depth overviews on any topic of interest.


Subject(s)
HIV Infections , Natural Language Processing , Humans , Cluster Analysis , Databases, Factual , Machine Learning , Review Literature as Topic
2.
Nonlinear Dyn ; 109(1): 239-248, 2022.
Article in English | MEDLINE | ID: mdl-35095197

ABSTRACT

We have developed a mathematical model and stochastic numerical simulation for the transmission of COVID-19 and other similar infectious diseases that accounts for the geographic distribution of population density, detailed down to the level of location of individuals, and age-structured contact rates. Our analytical framework includes a surrogate model optimization process to rapidly fit the parameters of the model to the observed epidemic curves for cases, hospitalizations, and deaths. This toolkit (the model, the simulation code, and the optimizer) is a useful tool for policy makers and epidemic response teams, who can use it to forecast epidemic development scenarios in local settings (at the scale of cities to large countries) and design optimal response strategies. The simulation code also enables spatial visualization, where detailed views of epidemic scenarios are displayed directly on maps of population density. The model and simulation also include the vaccination process, which can be tailored to different levels of efficiency and efficacy of different vaccines. We used the developed framework to generate predictions for the spread of COVID-19 in the canton of Geneva, Switzerland, and validated them by comparing the calculated number of cases and recoveries with data from local seroprevalence studies.

3.
Article in English | MEDLINE | ID: mdl-33804022

ABSTRACT

The ongoing pandemic of COVID-19 (Coronavirus Infectious Disease-2019) was first reported at the end of 2019 in Wuhan, China. On 30 January 2020, the WHO declared a Public Health Emergency for the novel coronavirus. On 11 March 2020, the WHO officially declared the COVID-19 outbreak as a pandemic. Due to the differences in population distribution, economic structure, degree of damage and other factors, the affected countries have introduced policies tailored to local conditions as a response to the pandemic, leading to different economic and social impacts. Considering the highly heterogeneous spreading of COVID-19 across regions, this paper takes a specific country (China) as a case study of the spread of the disease and national intervention models for the COVID-19 pandemic. The research period of this article is from 17 December to 26 April 2020, because this time period basically covered the important time nodes of the epidemic in China from animal-to-human transmission, limited human-to-human transmission, epidemic to gradual control. This study is useful for comparing the effectiveness of different interventions at various stages of epidemic development within the same country and can also promote the comparison of the epidemic response interventions of different countries. Based on the conclusions of the model simulation, this article evaluates the dual impact of the epidemic on people's wellbeing and the economy.


Subject(s)
COVID-19 , Pandemics , China/epidemiology , Government , Humans , SARS-CoV-2
4.
Epidemiologia (Basel) ; 2(3): 360-376, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-36417231

ABSTRACT

The emergence of the SARS-CoV-2 pandemic in the beginning of 2020 led to the deployment of enormous amounts of resources by different countries for vaccine development, and the Russian Federation was the first country in the world to approve a COVID-19 vaccine on 11 August 2020. In our research we sought to crystallize why the rollout of Sputnik V has been relatively slow considering that it was the first COVID-19 vaccine approved in the world. We looked at production capacity, at the number of vaccine doses domestically administered and internationally exported, and at vaccine hesitancy levels. By 6 May 2021, more first doses of Sputnik V had been administered abroad than domestically, suggesting that limited production capacity was unlikely to be the main reason behind the slow rollout. What remains unclear, however, is why Russia prioritized vaccine exportation. We provide three hypotheses that may contribute to explaining the slow domestic rollout: a generalized vaccine distrust among the Russian population, a desire to help less technologically advanced nations, and possible geopolitical incentives.

5.
Article in English | MEDLINE | ID: mdl-33339119

ABSTRACT

This article synthesizes the results of case studies on the development of the coronavirus disease 2019 (COVID-19) pandemic and control measures by governments in 16 countries. When this work was conducted, only 6 months had passed since the pandemic began, and only 4 months since the first events were recognized outside of China. It was too early to draw firm conclusions about the effectiveness of measures in each of the selected countries; however, the authors present some efforts to identify and classify response and containment measures, country-by-country, for future comparison and analysis. There is a significant variety of policy tools and response measures employed in different countries, and while it is still hard to directly compare the different approaches based on their efficacy, it will definitely provide many inputs for the future data analysis efforts.


Subject(s)
COVID-19 , Government , Pandemics , Public Health/methods , Humans , Internationality
6.
F1000Res ; 9: 646, 2020.
Article in English | MEDLINE | ID: mdl-34631035

ABSTRACT

The recent lifting of COVID-19 related restrictions in Switzerland causes uncertainty about the future of the epidemic. We developed a compartmental model for SARS-CoV-2 transmission in Switzerland and projected the course of the epidemic until the end of year 2020 under various scenarios. The model was age-structured with three categories: children (0-17), adults (18-64) and seniors (65- years). Lifting all restrictions according to the plans disclosed by the Swiss federal authorities by mid-May resulted in a rapid rebound in the epidemic, with the peak expected in July. Measures equivalent to at least 90% reduction in all contacts were able to eradicate the epidemic; a 56% reduction in contacts could keep the intensive care unit occupancy under the critical level and delay the next wave until October. In scenarios where strong contact reductions were only applied in selected age groups, the epidemic could not be suppressed, resulting in an increased risk of a rebound in July, and another stronger wave in September. Future interventions need to cover all age groups to keep the SARS-CoV-2 epidemic under control.


Subject(s)
COVID-19 , Epidemics , Adult , Aged , Child , Humans , SARS-CoV-2 , Switzerland/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...