Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 4): 654-660, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32831284

ABSTRACT

Single crystals of SmAl3(BO3)4 were synthesized by the group growth on seeds method. The crystal structure was solved using a single-crystal experiment and the purity of the bulk material was proved by the Rietveld method. This borate crystallizes in the monoclinic C2/c space group with unit-cell parameters a = 7.2386 (3), b = 9.3412 (5), c = 11.1013 (4) Šand ß = 103.2240 (10)°. IR and Raman spectroscopic analyses confirmed the monoclinic structure of SmAl3(BO3)4. Under 532.1 nm excitation, luminescence spectra exhibit bands assignable to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2. The similarity of the luminescence spectra of the trigonal and monoclinic polymorphs is explained by the minor role of Sm-O bond distortion and the primary role of rotational distortion of SmO6 octahedra. The smaller covalency of the Sm-O bond in alumoborates is deduced in comparison with galloborates. Calorimetric measurements did not reveal high-temperature structural phase transitions up to a temperature of 720 K.

2.
J Phys Condens Matter ; 28(39): 396001, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27478162

ABSTRACT

The magnetic structure of the mixed rare-earth system Pr x Y1-x Fe3(BO3)4 (x = 0.75, 0.67, 0.55, 0.45, 0.25) was studied via magnetic and resonance measurements. These data evidence the successive spin reorientation from the easy-axis antiferromagnetic structure formed in PrFe3(BO3)4 to the easy-plane one of YFe3(BO3)4 associated with the weakening of the magnetic anisotropy of the Pr subsystem due to its diamagnetic dilution by nonmagnetic Y. This reorientation occurs through the formation of an inclined magnetic structure, as was confirmed by our previous neutron research in the range of x = 0.67 ÷ 0.45. In the compounds with x = 0.75 and 0.67 whose magnetic structure is close to the easy-axis one, a two-step spin reorientation takes place in the magnetic field H||c. Such a peculiarity is explained by the formation of an interjacent inclined magnetic structure with magnetic moments of Fe ions located closer to the basal plane than in the initial state, with these intermediate states remaining stable in some ranges of the magnetic field. An approach based on a crystal field model for the Pr(3+) ion and the molecular-field approximation is used to describe the magnetic characteristics of the system Pr x Y1-x Fe3(BO3)4. With the parameters of the d-d and f-d exchange interactions, of the magnetic anisotropy of the iron subsystem and of the crystal field parameters of praseodymium thus determined, it is possible to achieve a good agreement between the experimental and calculated temperature and field dependences of the magnetization curves (up to 90 kOe) and magnetic susceptibilities (2-300 K).

3.
Appl Opt ; 55(12): B11-3, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27140114

ABSTRACT

The linear birefringence induced by the electric field was first detected in a TmAl3(BO3)4 single crystal. The electric field dependence of the birefringence was investigated. The estimation of the electro-optical coefficient of the material gives ≈1.5×10-10 cm/V for a wavelength 632.8 nm.

4.
Appl Opt ; 53(10): B116-20, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24787192

ABSTRACT

The Faraday effect induced by an external magnetic field in TbFe3(BO3)4 and TbAl3(BO3)4 borates at a wavelength 633 nm has been investigated. It was found that the terbium subsystem brings the dominant magnetic contribution to the Faraday rotation at low temperatures in borate TbFe3(BO3)4. For both TbFe3(BO3)4 and TbAl3(BO3)4 the magneto-optical coefficients of the terbium subsystem were determined.

5.
J Phys Condens Matter ; 22(11): 116006, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-21389481

ABSTRACT

The present paper reports on the specific heat and magnetization of the YFe(3)(BO(3))(4) and ErFe(3)(BO(3))(4) single crystals. In both compounds, antiferromagnetic order of the iron spins evolves at T(N) = 38 K. The experimental data suggest that the magnetic moments are in the basal plane of the trigonal crystal for both compounds. In the magnetically ordered state the crystal is subdivided into three types of domains, the magnetic moments of the Fe(3+) ions being aligned along the a axis within each domain. For ErFe(3)(BO(3))(4), two non-equivalent magnetic positions of the Er(3+) ions in each domain are observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...