Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 3671, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111884

ABSTRACT

Methylation of lysine residues in histone proteins is catalyzed by S-adenosylmethionine (SAM)-dependent histone lysine methyltransferases (KMTs), a genuinely important class of epigenetic enzymes of biomedical interest. Here we report synthetic, mass spectrometric, NMR spectroscopic and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics studies on KMT-catalyzed methylation of histone peptides that contain lysine and its sterically demanding analogs. Our synergistic experimental and computational work demonstrates that human KMTs have a capacity to catalyze methylation of slightly bulkier lysine analogs, but lack the activity for analogs that possess larger aromatic side chains. Overall, this study provides an important chemical insight into molecular requirements that contribute to efficient KMT catalysis and expands the substrate scope of KMT-catalyzed methylation reactions.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Lysine/chemistry , Catalysis , Catalytic Domain , Humans
2.
Sci Rep ; 7(1): 16148, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170487

ABSTRACT

Histone lysine methyltransferases (KMTs) represent an important class of epigenetic enzymes that play essential roles in regulation of gene expression in humans. Members of the KMT family catalyze the transfer of the methyl group from S-adenosylmethionine (SAM) to lysine residues in histone tails and core histones. Here we report combined MALDI-TOF MS experiments, NMR analyses and quantum mechanical/molecular dynamics studies on human KMT-catalyzed methylation of the most related shorter and longer lysine analogues, namely ornithine and homolysine, in model histone peptides. Our experimental work demonstrates that while lysine is an excellent natural substrate for KMTs, ornithine and homolysine are not. This study reveals that ornithine does not undergo KMT-catalyzed methylation reactions, whereas homolysine can be methylated by representative examples of human KMTs. The results demonstrate that the specificity of KMTs is highly sensitive to the side chain length of the residue to be methylated. The origin for the degree of the observed activities of KMTs on ornithine and homolysine is discussed.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Lysine/metabolism , Catalysis , Histone-Lysine N-Methyltransferase/chemistry , Humans , Lysine/chemistry , Magnetic Resonance Spectroscopy , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...