Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 48(1): 59-65, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19924460

ABSTRACT

The CellDrum technology (The term 'CellDrum technology' includes a couple of slightly different technological setups for measuring lateral mechanical tension in various types of cell monolayers or 3D-tissue constructs) was designed to quantify the contraction rate and mechanical tension of self-exciting cardiac myocytes. Cells were grown either within flexible, circular collagen gels or as monolayer on top of respective 1-mum thin silicone membranes. Membrane and cells were bulged outwards by air pressure. This biaxial strain distribution is rather similar the beating, blood-filled heart. The setup allowed presetting the mechanical residual stress level externally by adjusting the centre deflection, thus, mimicking hypertension in vitro. Tension was measured as oscillating differential pressure change between chamber and environment. A 0.5-mm thick collagen-cardiac myocyte tissue construct induced after 2 days of culturing (initial cell density 2 x 10(4) cells/ml), a mechanical tension of 1.62 +/- 0.17 microN/mm(2). Mechanical load is an important growth regulator in the developing heart, and the orientation and alignment of cardiomyocytes is stress sensitive. Therefore, it was necessary to develop the CellDrum technology with its biaxial stress-strain distribution and defined mechanical boundary conditions. Cells were exposed to strain in two directions, radially and circumferentially, which is similar to biaxial loading in real heart tissues. Thus, from a biomechanical point of view, the system is preferable to previous setups based on uniaxial stretching.


Subject(s)
Myocytes, Cardiac/physiology , Adrenergic beta-Antagonists/pharmacology , Animals , Animals, Newborn , Biomechanical Phenomena , Cells, Cultured , Mechanotransduction, Cellular/drug effects , Mechanotransduction, Cellular/physiology , Myocytes, Cardiac/drug effects , Norepinephrine/pharmacology , Rats , Stress, Mechanical
2.
Eur Biophys J ; 38(5): 589-600, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19238378

ABSTRACT

UNLABELLED: When aspirating human red blood cells (RBCs) into 1.3 mum pipettes (DeltaP = -2.3 kPa), a transition from blocking the pipette below a critical temperature T(c) = 36.3 +/- 0.3 degrees C to passing it above the T(c) occurred (micropipette passage transition). With a 1.1 mum pipette no passage was seen which enabled RBC volume measurements also above T(c). With increasing temperature RBCs lost volume significantly faster below than above a T(c) = 36.4 +/- 0.7 (volume transition). Colloid osmotic pressure (COP) measurements of RBCs in autologous plasma (25 degrees C < or = T < or = 39.5 degrees C) showed a T (c) at 37.1 +/- 0.2 degrees C above which the COP rapidly decreased (COP transition). In NMR T(1)-relaxation time measurements, the T(1) of RBCs in autologous plasma changed from a linear (r = 0.99) increment below T(c) = 37 +/- 1 degrees C at a rate of 0.023 s/K into zero slope above T(c) (RBC T(1) transition). IN CONCLUSION: An amorphous hemoglobin-water gel formed in the spherical trail, the residual partial sphere of the aspirated RBC. At T(c), a sudden fluidization of the gel occurs. All changes mentioned above happen at a distinct T(c) close to body temperature. The T(c) is moved +0.8 degrees C to higher temperatures when a D(2)O buffer is used. We suggest a mechanism similar to a "glass transition" or a "colloidal phase transition". At T(c), the stabilizing Hb bound water molecules reach a threshold number enabling a partial Hb unfolding. Thus, Hb senses body temperature which must be inscribed in the primary structure of hemoglobin and possibly other proteins.


Subject(s)
Body Temperature , Hemoglobins/chemistry , Hemoglobins/metabolism , Erythrocyte Volume , Humans , Magnetic Resonance Spectroscopy , Osmotic Pressure , Phase Transition , Temperature , Water/metabolism
3.
Biophys J ; 91(8): 3014-21, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16844747

ABSTRACT

In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature T(b) = 31-33 degrees C), and echidna (Tachyglossus aculeatus, body temperature T(b) = 32-33 degrees C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (R(h)) and fractional (normalized) change in the ellipticity (F(obs)) at 222 +/- 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25 degrees C to 45 degrees C. The existence of a structural transition of human hemoglobin at the critical temperature T(c) between 36-37 degrees C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at T(c). In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32-33 degrees C, which are close to the species' body temperature T(b). The data suggest that the correlation of the structural transition's critical temperature T(c) and the species' body temperature T(b) is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins.


Subject(s)
Body Temperature , Hemoglobins/physiology , Platypus/physiology , Tachyglossidae/physiology , Adult , Amino Acid Sequence , Animals , Circular Dichroism , Hemoglobins/chemistry , Humans , Light , Molecular Sequence Data , Platypus/blood , Protein Conformation , Tachyglossidae/blood
4.
Physiol Res ; 55(4): 381-388, 2006.
Article in English | MEDLINE | ID: mdl-16238460

ABSTRACT

Erythrocytes (RBC) from untrained male Wistar rats and rat glomerular endothelial cells (EC) were used to investigate the effects of acute exercise (speed: 20 m/min, slope: 0, duration: 1 hour) on RBC membrane protein oxidation and adhesion to cultured EC. Experimental animals were divided into juvenile (age 10 weeks) and adult (age 30 weeks) groups for these studies. Immediately following exercise, juvenile rat RBC membrane protein oxidation was significantly enhanced. Adult rat RBC showed significantly higher basal protein oxidation than juvenile RBC; but the level of adult rat RBC membrane protein oxidation was unaffected by exercise. Prior to exercise, adult rat RBC showed significantly higher adhesion to EC than RBC of juvenile rat. There was no difference in plasma fibronectin or fibrinogen levels following exercise. Only juvenile rat RBC showed a significant decrease in sialic acid residue content following exercise. These experiments show that there are changes in RBC-EC interactions following exercise that are influenced by animal age.


Subject(s)
Endothelial Cells/cytology , Erythrocytes/cytology , Erythrocytes/metabolism , Physical Exertion/physiology , Age Factors , Animals , Cell Adhesion/physiology , Cells, Cultured , Erythrocyte Membrane/metabolism , Fibrinogen/metabolism , Fibronectins/blood , Male , N-Acetylneuraminic Acid/metabolism , Oxidation-Reduction , Rats , Rats, Wistar
5.
Methods Find Exp Clin Pharmacol ; 27(6): 391-4, 2005.
Article in English | MEDLINE | ID: mdl-16179956

ABSTRACT

This study presents findings on the proliferation rate, cellular apoptosis, and viability of human chondrocyte and osteoblast cultures before and after treatment with NMR pulse sequences. A commercially available nuclear magnetic resonance machine (MBST(R)-Nuclear Magnetic Resonance Therapy) was used for treatment. The study was carried out for 19 days, including 9 days of NMR exposure in a controlled, double-blind, randomized manner, using commercially available human cell lines. The study revealed that NMR treatment did not induce apoptosis or inhibit cell viability, but revealed a tendency of an elevated cell proliferation rate as observed by cell count.


Subject(s)
Cell Proliferation , Magnetic Resonance Spectroscopy , Apoptosis , Cell Line , Cell Survival , Chondrocytes , Double-Blind Method , Humans , Osteoblasts
6.
Med Biol Eng Comput ; 43(6): 800-7, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16594309

ABSTRACT

Air purification by plasma-generated cluster ions (PCIs) relies on a novel technology producing hydrated positive and negative ions. Phenomenological tests have shown strong evidence of lethal effects of the PCIs on various micro-organisms. However, the mechanisms of PCI action are still widely unknown. The aim was thus to test the bactericidal efficacy of PCI technology on common indoor micro-organisms and to explore possible PCI mechanisms of action. According to time/dose-dependent experiments with Staphylococcus, Enterococcus, Micrococcus and Bacillus, the inhibiting effects became apparent within the first few minutes of PCI exposure and led to an irreversible 99.9% destruction within the following 2-8 h of exposure. The destructive effect of the PCIs corresponded to membrane damage of the bacteria. Use of the techniques of both SDS PAGE and 2D PAGE revealed changes in the bacterial surface protein composition induced by the PCIs. In contrast, neither DNA nor cytoplasm protein damage was detected electrophoretically. The antimicrobial action of the PCIs seems to occur because of chemical modification of the surface proteins of bacteria. In situ hydroxyl radical formation on the surface of bacteria was proposed as the leading mechanism of the protein damage caused by the PCIs. At the same time, DNA damage seems not to be involved in the antibacterial action of the PCIs. The data obtained would broaden the knowledge concerning the antibacterial effects of air-born plasma-generated cluster ions and help to produce more efficient air-cleaning devices.


Subject(s)
Air Ionization , Air Microbiology , Anti-Bacterial Agents/pharmacology , Air Pollution, Indoor/prevention & control , Bacterial Proteins/drug effects , Humans , Ions/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...