Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Water Res ; 178: 115855, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32375109

ABSTRACT

This paper aims to elucidate the role of extracellular polymeric substances (EPS) in regulating anion and cation concentrations and toxicity towards microorganisms in anaerobic granular sludges adapted to low (0.22 M of Na+) and high salinity (0.87 M of Na+). The ion exchange properties of EPS were studied with a novel approach, where EPS were entangled with an inert binder (PVDF-HFP) to form a membrane and characterized in an electrodialysis cell. With a mixture of NaCl and KCl salts the EPS membrane was shown to act as a cation exchange membrane (CEM) with a current efficiency of ∼80%, meaning that EPS do not behave as ideal CEM. Surprisingly, the membrane had selectivity for transport of K+ compared to Na+ with a separation factor ( [Formula: see text] ) of 1.3. These properties were compared to a layer prepared from a model compound of EPS (alginate) and a commercial CEM. The alginate layer had a similar current efficiency (∼80%.), but even higher [Formula: see text] of 1.9, while the commercial CEM did not show selectivity towards K+ or Na+, but exhibited the highest current efficiency of 92%. The selectivity of EPS and alginate towards K+ transport has interesting potential applications for ion separation from water streams and should be further investigated. The anion repelling and cation binding properties of EPS in hydrated and dehydrated granules were further confirmed with microscopy (SEM-EDX, epifluorescence) and ion chromatography (ICP-OES, IC) techniques. Results of specific methanogenic activity (SMA) tests conducted with 0.22 and 0.87 M Na+ adapted granular sludges and with various monovalent salts suggested that ions which are preferentially transported by EPS are also more toxic towards methanogenic cells.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Anaerobiosis , Cations , Sodium Chloride
2.
Water Res ; 171: 115389, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31864132

ABSTRACT

Sulfide is frequently suggested as a tool to release and recover phosphate from iron phosphate rich waste streams, such as sewage sludge, although systematic studies on mechanisms and efficiencies are missing. Batch experiments were conducted with different synthetic iron phosphates (purchased Fe(III)P, Fe(III)P synthesized in the lab and vivianite, Fe(II)3(PO4)2*8H2O), various sewage sludges (with different molar Fe:P ratios) and sewage sludge ash. When sulfide was added to synthetic iron phosphates (molar Fe:S = 1), phosphate release was completed within 1 h with a maximum release of 92% (vivianite), 60% (purchased Fe(III)P) and 76% (synthesized Fe(III)P). In the latter experiment, rebinding of phosphate to Fe(II) decreased net phosphate release to 56%. Prior to the re-precipitation, phosphate release was very efficient (P released/S input) because it was driven by Fe(III) reduction and not by, more sulfide demanding, FeSx formation. This was confirmed in low dose sulfide experiments without significant FeSx formation. Phosphate release from vivianite was very efficient because sulfide reacts directly (1:1) with Fe(II) to form FeSx, without Fe(III) reduction. At the same time vivianite-Fe(II) is as efficient as Fe(III) in binding phosphate. From digested sewage sludge, sulfide dissolved maximally 30% of all phosphate, from the sludge with the highest iron content which was not as high as suggested in earlier studies. Sludge dewaterability (capillary suction test, 0.13 ± 0.015 g2(s2m4)-1) dropped significantly after sulfide addition (0.06 ± 0.004 g2(s2m4)-1). Insignificant net phosphate release (1.5%) was observed from sewage sludge ash. Overall, sulfide can be a useful tool to release and recover phosphate bound to iron from sewage sludge. Drawbacks -deterioration of the dewaterability and a net phosphate release that is lower than expected-need to be investigated.


Subject(s)
Ferric Compounds , Waste Disposal, Fluid , Iron , Phosphates , Phosphorus , Sewage , Sulfides
3.
Water Res ; 147: 33-42, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30296607

ABSTRACT

Produced water (PW) is the largest waste stream generated by oil and gas industry. It is commonly treated by physical-chemical processes due to high salt content and poor biodegradability of water insoluble compounds, such as n-alkanes. N-alkanes can represent a major fraction of organic contaminants within PW. In this study the possibility of simultaneous n - alkane biodegradation and production of neutral lipids in a concentrated PW stream with A. borkumenis SK2 as the sole reactor inoculum was investigated. N-alkane removal efficiency up to 99.6%, with influent alkane COD of 7.4 g/L, was achieved in a continuously operated reactor system. Gas chromatography results also showed that the majority of other non-polar compounds present in the PW were biodegraded. Biodegradation of n-alkanes was accompanied by simultaneous production of neutral lipids, mostly wax ester (WE)-alike compounds. We demonstrate, that under nutrient limited conditions and 108.9 ±â€¯3.3 mg/L residual n-alkane concentration the accumulation of extracellular WE-alike compounds can be up to 12 times higher compared to intracellular, reaching 3.08 grams per litre of reactor volume (g/Lreactor) extracellularly and 0.28 g/Lreactor intracellularly. With residual n-alkane concentration of 311.5 ±â€¯34.2 mg/L accumulation of extracellular and intracellular WE-alike compounds can reach up to 6.15 and 0.91 g/Lreactor, respectively. To the best of our knowledge simultaneous PW treatment coupled with production of neutral lipids has never been demonstrated before.


Subject(s)
Lipids , Water , Alkanes , Biodegradation, Environmental
4.
Water Res ; 147: 142-151, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30308373

ABSTRACT

Increasing amounts of saline (waste)water with high concentrations of organic pollutants are generated globally. In the anaerobic (waste)water treatment domain, high salt concentrations are repeatedly reported to inhibit methanogenic activity and strategies to overcome this toxicity are needed. Current research focuses on the use of potential osmolyte precursor compounds for osmotic stress alleviation in granular anaerobic sludges upon exposure to hypersalinity shocks. Glutamic acid, aspartic acid, lysine, potassium, gelatine, and tryptone were tested for their potential to alleviate osmotic stress in laboratory grown and full - scale granular sludge. The laboratory grown granular sludge was adapted to 5 (R5) and 20 (R20) g Na+/L. Full-scale granular sludge was obtained from internal circulation reactors treating tannery (waste)water with influent conductivity of 29.2 (Do) and 14.1 (Li) mS/cm. In batch experiments which focused on specific methanogenic activity (SMA), R5 granular sludge was exposed to a hypersalinity shock of 20 g Na+/L. The granular sludge of Do and Li was exposed to a hypersalinity shock of 10 g Na+/L with sodium acetate as the sole carbon source. The effects on R20 granular sludge were studied at the salinity level to which the sludge was already adapted, namely 20 g Na+/L. Dosing of glutamic acid, aspartic acid, gelatine, and tryptone resulted in increased SMA compared to only acetate fed batches. In batches with added glutamic acid, the SMA increased by 115% (Li), 35% (Do) and 9% (R20). With added aspartic acid, SMA increased by 72% (Li), 26% (Do), 12% (R5) and 7% (R20). The addition of tryptone resulted in SMA increases of 36% (R5), 17% (R20), 179% (Li), and 48% (Do), whereas added gelatine increased the SMA by 30% (R5), 14% (R20), 23% (Li), and 13% (Do). The addition of lysine, meanwhile, gave negative effects on SMA of all tested granular sludges. Potassium at sea water Na/K ratio (27.8 w/w) had a slight positive effect on SMA of Do (7.3%) and Li (10.1%), whereas at double the sea water ratio (13.9% w/w) had no pronounced positive effect. R20 granular sludge was also exposed to hyposalinity shock from 20 down to 5 g Na+/L. Glutamate and N-acetyl-ß-lysine were excreted by microbial consortium in anaerobic granular sludge adapted to 20 g Na+/L upon this exposure to hyposalinity. A potential consequence when applying these results is that saline streams containing specific and hydrolysable proteins can be anaerobically treated without additional dosing of osmolytes.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Osmotic Pressure
5.
Water Res ; 128: 293-303, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29107914

ABSTRACT

It is commonly accepted that high salt concentrations negatively affect microbial activity in biological wastewater treatment reactors such as upflow anaerobic sludge blanket (UASB) reactors. Microbial aggregation in such reactors is equally important. It is well documented that anaerobic granules, when exposed to high salinity become weak and disintegrate, causing wash-out, operational problems and decreasing process performance. In this research, the possibility of microbial granule formation from dispersed biomass was investigated at salinity levels of 5 and 20 g Na+/L. High removal efficiencies of soluble influent organics were achieved at both salinity levels and this was accompanied by fast and robust formation of microbial granules. The process was found to be stable for the entire operational period of 217 days. As far as we know this is the first time it has been demonstrated that stable granule formation is possible at a salinity level as high as 20 g Na+/L. Methanosaeta was identified as the dominant methanogen at both salinity levels. Streptococcus spp. and bacteria belonging to the family Lachnospiraceae were identified as the dominant microbial population at 5 and 20 and g Na+/L, respectively.


Subject(s)
Bioreactors/microbiology , Salinity , Waste Management/methods , Anaerobiosis , Bacteria , Methanosarcinaceae/isolation & purification , Sewage , Sodium Chloride , Wastewater
6.
Water Res ; 121: 61-71, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28511041

ABSTRACT

For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules.


Subject(s)
Biofilms , Salinity , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 16S , Sewage
7.
Water Res ; 104: 449-460, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27579874

ABSTRACT

Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge of two sewage treatment plants was investigated. The plants relied either solely on iron based phosphorus removal or on biological phosphorus removal supported by iron dosing. Mössbauer spectroscopy showed that vivianite and pyrite were the dominating iron compounds in the surplus and anaerobically digested sludge solids in both plants. Mössbauer spectroscopy and XRD suggested that vivianite bound phosphorus made up between 10 and 30% (in the plant relying mainly on biological removal) and between 40 and 50% of total phosphorus (in the plant that relies on iron based phosphorus removal). Furthermore, Mössbauer spectroscopy indicated that none of the samples contained a significant amount of Fe(III), even though aerated treatment stages existed and although besides Fe(II) also Fe(III) was dosed. We hypothesize that chemical/microbial Fe(III) reduction in the treatment lines is relatively quick and triggers vivianite formation. Once formed, vivianite may endure oxygenated treatment zones due to slow oxidation kinetics and due to oxygen diffusion limitations into sludge flocs. These results indicate that vivianite is the major iron phosphorus compound in sewage treatment plants with moderate iron dosing. We hypothesize that vivianite is dominating in most plants where iron is dosed for phosphorus removal which could offer new routes for phosphorus recovery.


Subject(s)
Ferric Compounds/chemistry , Sewage/chemistry , Iron/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Waste Disposal, Fluid
8.
PLoS One ; 11(3): e0149165, 2016.
Article in English | MEDLINE | ID: mdl-26937632

ABSTRACT

An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml), 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin). With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.


Subject(s)
Agar/chemistry , Biological Assay , Oligochaeta/metabolism , Proteins/metabolism , Water Pollutants, Chemical/metabolism , Animal Feed/supply & distribution , Animals , Biomass , Food Industry , Gels , Oligochaeta/growth & development , Proteins/isolation & purification , Reproduction/physiology , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification
9.
Water Res ; 76: 99-109, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25794465

ABSTRACT

While most membrane bioreactor (MBR) research focuses on improving membrane filtration through air scour, backwashing and chemical cleaning to physically counteract fouling, relatively few studies have dealt with fouling prevention, e.g. minimizing the impact of operational settings that negatively impact sludge filterability. To evaluate the importance of those settings, the effects of bioreactor aeration intensity variations on membrane fouling have been studied in a lab-scale MBR setup while simultaneously monitoring a unique set of key sludge parameters. In particular, this paper focuses on the impact of shear dynamics resulting from fine air bubbles on the activated sludge quality and flocculation state, impacting membrane fouling. When augmenting the fine bubble aeration intensity both the total and irreversible fouling rate increased. Major indications for sludge filterability deterioration were found to be a shift in the particle size distribution (PSD) in the 3-300 µm range towards smaller sludge flocs, and increasing concentrations of submicron particles (10-1000 nm), soluble microbial products and biopolymers. When lowering the aeration intensity, both the sludge characteristics and fouling either went back to background values or stabilized, respectively indicating a temporary or more permanent effect, with or without time delay. The shift in PSD to smaller flocs and fragments likely increased the total fouling through the formation of a less permeable cake layer, while high concentrations of submicron particles were likely causing increased irreversible fouling through pore blocking. The insights from the performed fouling experiments can be used to optimize system operation with respect to influent dynamics.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid/instrumentation , Filtration , Flocculation , Particle Size , Sewage/analysis , Waste Disposal, Fluid/methods
10.
Appl Microbiol Biotechnol ; 99(12): 5327-37, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25634019

ABSTRACT

High-loaded membrane bioreactors (HL-MBRs), i.e., bioreactors equipped with a membrane for biomass retention and operated at extremely short sludge and hydraulic retention times, can concentrate sewage organic matter to facilitate subsequent energy and chemical recovery from these organics. Bioflocculation, accomplished by microorganisms that produce extracellular polymers, is a very important mechanism in these reactors. Bacterial diversity of the sludge and supernatant fraction of HL-MBRs operated at very short sludge retention times (0.125, 0.5, and 1 day) were determined using a PCR-denaturing gradient gel electrophoresis (DGGE) and clone library approach and compared to the diversity in sewage. Already at a sludge retention time (SRT) of 0.125 day, a distinct bacterial community developed compared to the community in sewage. Bioflocculation, however, was low and the majority of the bacteria, especially Arcobacter, were present in the supernatant fraction. Upon increasing SRT from 0.125 to 1 day, a much stronger bioflocculation was accompanied by an increased abundance of Bacteroidetes in the (solid) sludge fraction: 27.5 % at an SRT of 0.5 day and 46.4 % at an SRT of 1 day. Furthermore, cluster analysis of DGGE profiles revealed that the bacterial community structure in the sludge was different from that in the supernatant. To localize specific bacterial classes in the sludge flocs, fluorescence in situ hybridization (FISH) was carried out with three different bacterial probes. This showed that Betaproteobacteria formed clusters in the sludge flocs whereas Alphaproteobacteria and Gammaproteobacteria were mainly present as single cells.


Subject(s)
Bacteria/isolation & purification , Bioreactors/microbiology , Wastewater/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Flocculation , Sewage/chemistry , Sewage/microbiology , Wastewater/microbiology
11.
Water Res ; 66: 199-207, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25213685

ABSTRACT

High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable organic chemicals. Little is known about the effect of the dissolved oxygen concentration (DO) on this bioflocculation process. To examine this effect, two HL-MBRs were operated, respectively at a low (1 mg L(-1)) and a higher (4 mg L(-1)) DO. The higher DO resulted in a better flocculation efficiency, i.e. 92% of the colloidal COD in the sewage flocculated compared to 69% at the lower DO. The difference was attributed to a higher microbial production of extracellular polymeric substances at a DO of 4 mg L(-1) and to more multivalent cations (calcium, iron and aluminium) being distributed to the floc matrix. In addition, the HL-MBR that was operated at a DO of 4 mg L(-1) gave a bigger mean floc size, a lower supernatant turbidity, better settleability and better membrane filterability than the HL-MBR that was operated at a DO of 1 mg L(-1).


Subject(s)
Bioreactors/microbiology , Membranes, Artificial , Oxygen/metabolism
12.
Water Res ; 63: 112-24, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24999116

ABSTRACT

Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy.


Subject(s)
Bioreactors , Charcoal/chemistry , Filtration , Sewage/analysis , Sodium Chloride/analysis , Waste Disposal, Fluid , Particle Size , Wastewater/analysis
13.
Water Res ; 56: 258-66, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24695067

ABSTRACT

High loaded MBRs (HL-MBR) can concentrate sewage organic matter by aerobic bioflocculation for subsequent anaerobic conversion to methane or volatile fatty acids. In the range of very short solid retention times (SRT), the effect of SRT on bioflocculation and EPS production in HL-MBR was investigated. This short SRT range was selected to find an optimum SRT maximising recovery of organics by aerobic bioflocculation and minimizing losses of organics by aerobic mineralization. Bioflocculation was studied in five HL-MBRs operated at SRTs of 0.125, 0.25, 0.5, 1 and 5 d. The extent of flocculation, defined as the fraction of suspended COD in the concentrate, increased from 59% at an SRT of 0.125 d to 98% at an SRT of 5 d. The loss of sewage organic matter by biological oxidation was 1, 2, 4, 11 and 32% at SRT of 0.125-5 d. An SRT of 0.5-1 d gave best combination of bioflocculation and organic matter recovery. Bound extracellular polymeric substances (EPS) concentrations, in particular EPS-protein concentrations, increased when the SRT was prolonged from 0.125 to 1 d. This suggests that these EPS-proteins govern the bioflocculation process. A redistribution took place from free (supernatant) EPS to bound (floc associated) EPS when the SRT was prolonged from 0.125 to 1 d, further supporting the fact that the EPS play a dominant role in the flocculation process. Membrane fouling was most severe at the shortest SRTs of 0.125 d. No positive correlation was detected between the concentration of free EPS and membrane fouling, but the concentration of submicron (45-450 nm) particles proved to be a good indicator for this fouling.


Subject(s)
Biopolymers , Bioreactors , Membranes, Artificial , Sewage/chemistry , Bacteria/metabolism , Flocculation , Waste Disposal, Fluid/methods
14.
Appl Biochem Biotechnol ; 172(1): 405-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24081706

ABSTRACT

An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m(2)/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m(2)/day and 0.023 g P/m(2)/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.


Subject(s)
Biofilms/growth & development , Biomass , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Water Pollutants/isolation & purification , Water Pollutants/metabolism , Biodegradation, Environmental , Biofilms/radiation effects , Diffusion , Hydrogen-Ion Concentration , Light , Nitrogen/isolation & purification , Nitrogen/metabolism , Phosphates/isolation & purification , Phosphates/metabolism , Seasons , Temperature , Time Factors
15.
Water Res ; 46(4): 1038-44, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22197265

ABSTRACT

In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic+aerobic 3) aerobic+activated carbon 4) aerobic+ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic+aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic+aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water.


Subject(s)
Chironomidae/drug effects , Daphnia/drug effects , Ecotoxicology/methods , Waste Disposal, Fluid , Water Pollutants, Chemical/toxicity , Water Purification , Animals , Chironomidae/growth & development , Daphnia/growth & development , Reproduction/drug effects , Toxicity Tests, Acute , Toxicity Tests, Chronic
16.
Water Sci Technol ; 63(11): 2759-65, 2011.
Article in English | MEDLINE | ID: mdl-22049776

ABSTRACT

Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.


Subject(s)
Phosphorus/chemistry , Sewage/analysis , Anaerobiosis , Bioreactors , Chemical Precipitation , Conservation of Energy Resources , Magnesium Compounds/chemistry , Phosphates/chemistry , Struvite
17.
Water Res ; 45(18): 5925-33, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21940029

ABSTRACT

Microalgal biofilms have so far received little attention as post-treatment for municipal wastewater treatment plants, with the result that the removal capacity of microalgal biofilms in post-treatment systems is unknown. This study investigates the capacity of microalgal biofilms as a post-treatment step for the effluent of municipal wastewater treatment plants. Microalgal biofilms were grown in flow cells with different nutrient loads under continuous lighting of 230 µmol/m(2)/s (PAR photons, 400-700 nm). It was found that the maximum uptake capacity of the microalgal biofilm was reached at loading rates of 1.0 g/m(2)/day nitrogen and 0.13 g/m(2)/day phosphorus. These maximum uptake capacities were the highest loads at which the target effluent values of 2.2 mg/L nitrogen and 0.15 mg/L phosphorus were still achieved. Microalgal biomass analysis revealed an increasing nitrogen and phosphorus content with increasing loading rates until the maximum uptake capacities. The internal nitrogen to phosphorus ratio decreased from 23:1 to 11:1 when increasing the loading rate. This combination of findings demonstrates that microalgal biofilms can be used for removing both nitrogen and phosphorus from municipal wastewater effluent.


Subject(s)
Cities , Microalgae/physiology , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Waste Disposal, Fluid , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Biodegradation, Environmental , Biofilms/growth & development , Biomass , Microalgae/growth & development , Microalgae/ultrastructure , Oxygen/analysis , Photosynthesis , Time Factors
18.
Water Res ; 45(9): 2887-96, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21453950

ABSTRACT

Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 µgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 µgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 µgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 µgL(-1), efficient removal to below limits of quantification continued for at least 1440 BV. Both ozonation and adsorption are suitable techniques for the removal of micropollutants from aerobically treated grey water.


Subject(s)
Charcoal/chemistry , Household Products/analysis , Ozone/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Aerobiosis , Benzhydryl Compounds , Biodegradation, Environmental , Cosmetics/analysis , Cosmetics/chemistry , Cosmetics/metabolism , Phenols/analysis , Phenols/chemistry , Phenols/metabolism , Soaps/analysis , Soaps/chemistry , Soaps/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
19.
Water Res ; 45(1): 63-74, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20822793

ABSTRACT

Black (toilet) water contains half of the organic load in the domestic wastewater, as well as the major fraction of the nutrients nitrogen and phosphorus. When collected with vacuum toilets, the black water is 25 times more concentrated than the total domestic wastewater stream, i.e. including grey water produced by laundry, showers etc. A two-stage nitritation-anammox process was successfully employed and removed 85%-89% of total nitrogen in anaerobically treated black water. The (free) calcium concentration in black water was too low (42 mg/L) to obtain sufficient granulation of anammox biomass. The granulation and retention of the biomass was improved considerably by the addition of 39 mg/L of extra calcium. This resulted in a volumetric nitrogen removal rate of 0.5 gN/L/d, irrespective of the two temperatures of 35 °C and 25 °C at which the anammox reactors were operated. Nitrous oxide, a very strong global warming gas, was produced in situations of an incomplete anammox conversion accompanied by elevated levels of nitrite.


Subject(s)
Calcium/chemistry , Nitrogen/isolation & purification , Waste Disposal, Fluid/methods , Autotrophic Processes , Nitrogen/chemistry
20.
Water Res ; 45(1): 375-83, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20832097

ABSTRACT

Vacuum collected black (toilet) water contains hormones and pharmaceuticals in relatively high concentrations (µg/L to mg/L range) and separate specific treatment has the potential of minimizing their discharge to surface waters. In this study, the fate of estrogens (natural and synthetical hormones) and pharmaceuticals (paracetamol, metoprolol, propranolol, cetirizine, doxycycline, tetracycline, ciprofloxacin, trimethoprim, carbamazepine, ibuprofen and diclofenac) in the anaerobic treatment of vacuum collected black water followed by nitrogen removal by partial nitritation-anammox was investigated. A new analytical method was developed to detect the presence of several compounds in the complex matrix of concentrated black water. Detected concentrations in black water ranged from 1.1 µg/L for carbamazepine to >1000 µg/L for paracetamol. Anaerobic treatment was only suitable to remove the majority of paracetamol (>90%). Metoprolol was partly removed (67%) during aerobic treatment. Deconjugation could have affected the removal efficiency of ibuprofen as concentrations even increased during anaerobic treatment and only after the anammox treatment 77% of ibuprofen was removed. The presence of persistent micro-pollutants (diclofenac, carbamazepine and cetirizine), which are not susceptible for biodegradation, makes the application of advanced physical and chemical treatment unavoidable.


Subject(s)
Nitrogen/isolation & purification , Waste Disposal, Fluid/methods , Water Purification/methods , Anaerobiosis , Hormones
SELECTION OF CITATIONS
SEARCH DETAIL
...