Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Brain ; 13(1): 114, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32825833

ABSTRACT

MicroRNAs perform important roles in the post-transcriptional regulation of gene expression. Sequencing as well as functional studies using antisense oligonucleotides indicate important roles for microRNAs during the development of epilepsy through targeting transcripts involved in neuronal structure, gliosis and inflammation. MicroRNA-22 (miR-22) has been reported to protect against the development of epileptogenic brain networks through suppression of neuroinflammatory signalling. Here, we used mice with a genetic deletion of miR-22 to extend these insights. Mice lacking miR-22 displayed normal behaviour and brain structure and developed similar status epilepticus after intraamygdala kainic acid compared to wildtype animals. Continuous EEG monitoring after status epilepticus revealed, however, an accelerated and exacerbated epilepsy phenotype whereby spontaneous seizures began sooner, occurred more frequently and were of longer duration in miR-22-deficient mice. RNA sequencing analysis of the hippocampus during the period of epileptogenesis revealed a specific suppression of inflammatory signalling in the hippocampus of miR-22-deficient mice. Taken together, these findings indicate a role for miR-22 in establishing early inflammatory responses to status epilepticus. Inflammatory signalling may serve anti-epileptogenic functions and cautions the timing of anti-inflammatory interventions for the treatment of status epilepticus.


Subject(s)
Disease Progression , Epilepsy/genetics , Epilepsy/pathology , Gene Deletion , Inflammation/genetics , MicroRNAs/genetics , Status Epilepticus/genetics , Transcription, Genetic , Animals , Down-Regulation/genetics , Female , Inflammation/pathology , Male , Mice , MicroRNAs/metabolism , Phenotype , Signal Transduction
2.
Neurobiol Learn Mem ; 149: 135-143, 2018 03.
Article in English | MEDLINE | ID: mdl-29458098

ABSTRACT

Lipopolysaccharide (LPS) has been long known to promote neuroinflammation and learning and memory deficits. Since spermine, one of the main natural polyamines in the central nervous system, protects from LPS-induced memory deficit by a mechanism that comprises GluN2B receptors, the aim of the present study was to determine whether brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) receptor and cAMP response element binding (CREB) are involved in this protective effect of spermine. Adult male Swiss albino mice received, immediately after training in the novel object recognition task, saline or LPS (250 µg/kg, i.p.); 5 min later they received saline or spermine (0.3 mg/kg, i.p.) and, when specified, 5 min thereafter saline or the TrkB receptor antagonist ANA-12 (0.5 mg/kg, i.p.) in different flanks. Animals were tested 24 h after training. Spermine protected from LPS-induced memory deficit and this protective effect was reversed by ANA-12. In a subset of animals BDNF, CREB and phospho-CREB immunoreactivity was determined in the hippocampi and cerebral cortex 4 h after spermine injection. Spermine reversed the decrease of mature BDNF levels induced by LPS in both hippocampus and cerebral cortex. Spermine increased phospho-CREB content and phospho-CREB/total CREB ratio in the cerebral cortex of LPS-treated mice. The results support that the protective effect of spermine on LPS-induced memory deficits depends on TrkB receptor activation and is accompanied by restoration of mature BDNF levels in hippocampus and cerebral cortex, as well as increased CREB phosphorylation in the cerebral cortex.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Membrane Glycoproteins/metabolism , Memory Disorders/metabolism , Neuroprotective Agents/pharmacology , Protein-Tyrosine Kinases/metabolism , Spermine/pharmacology , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/metabolism , Lipopolysaccharides , Male , Memory Disorders/chemically induced , Mice , Phosphorylation/drug effects , Signal Transduction/drug effects
3.
Neurobiol Learn Mem ; 131: 18-25, 2016 05.
Article in English | MEDLINE | ID: mdl-26968655

ABSTRACT

Spermidine (SPD) is an endogenous aliphatic amine that modulates GluN2B-containing NMDA receptors and improves memory. Recent evidence suggests that systemic SPD improves the persistence of the long term memory of fear. However, the role of hippocampal polyamines and its binding sites in the persistence of fear memory is to be determined, as well as its putative underlying mechanisms. This study investigated whether the intrahippocampal (i.h.) infusion of spermidine or arcaine, modulators of polyamine binding site at GluN2B-containing NMDA receptors, alters the persistence of the memory of contextual fear conditioning task in rats. We also investigated whether protein synthesis and cAMP dependent protein kinase (PKA) play a role in SPD-induced improvement of the fear memory persistence. While 12h post-training infusion of spermidine facilitated, arcaine and the inhibitor of protein synthesis (anisomycin) impaired the memory of fear assessed 7days after training. The infusion of arcaine, anisomycin or a selective PKA inhibitor (H-89), at doses that have no effect on memory per se, prevented the SPD-induced improvement of memory persistence. H-89 prevented the stimulatory effect of SPD on phospho-PKA/total-PKA ratio. These results suggests that the improvement of fear memory persistence induced by spermidine involves GluN2B-containing NMDA receptors, PKA pathway and protein synthesis in rats.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Fear/physiology , Hippocampus/drug effects , Memory, Long-Term/drug effects , Nootropic Agents/pharmacology , Polyamines/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Synthesis Inhibitors/pharmacology , Spermidine/pharmacology , Animals , Anisomycin/administration & dosage , Anisomycin/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Biguanides/administration & dosage , Biguanides/pharmacology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Isoquinolines/administration & dosage , Isoquinolines/pharmacology , Male , Nootropic Agents/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Protein Synthesis Inhibitors/administration & dosage , Rats , Rats, Wistar , Spermidine/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...