Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 306(12): E1354-66, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24735890

ABSTRACT

The existence of functional connexin36 (Cx36) hemichannels in ß-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 µM mefloquine (connexin inhibitor). ATP content was higher in Cx36(-/-) than Cx36(+/+) islets and was not decreased by KCl depolarization; Cx36(+/-) islets showed values between that of control and homozygous islets. Five minimolar extracellular ATP increased ATP content and ATP/ADP ratio and induced a biphasic insulin secretion in depolarized Cx36(+/+) and Cx36(+/-) but not Cx36(-/-) islets. Cx36 hemichannels expressed in oocytes opened upon depolarization of membrane potential, and their activation was inhibited by mefloquine and glucose (IC50 ∼8 mM). It is postulated that glucose-induced inhibition of Cx36 hemichannels in islet ß-cells might avoid depolarization-induced ATP loss, allowing an optimum increase of the ATP/ADP ratio by sugar metabolism and a biphasic stimulation of insulin secretion. Gradual suppression of glucose-induced insulin release in Cx36(+/-) and Cx36(-/-) islets confirms that Cx36 gap junction channels are necessary for a full secretory stimulation and might account for the glucose intolerance observed in mice with defective Cx36 expression. Mefloquine targeting of Cx36 on both gap junctions and hemichannels also suppresses glucose-stimulated secretion. By contrast, glucose stimulation of insulin secretion requires Cx36 hemichannels' closure but keeping gap junction channels opened.


Subject(s)
Blood Glucose/metabolism , Connexins/antagonists & inhibitors , Glucose Intolerance/metabolism , Hyperglycemia/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Up-Regulation , Adenosine Triphosphate/metabolism , Animals , Blood Glucose/analysis , Connexins/genetics , Connexins/metabolism , Gap Junctions/drug effects , Gap Junctions/metabolism , Glucose Intolerance/blood , Heterozygote , Hyperglycemia/etiology , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Membrane Potentials/drug effects , Membrane Transport Modulators/pharmacology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tissue Culture Techniques , Up-Regulation/drug effects , Gap Junction delta-2 Protein
2.
Neuropharmacology ; 75: 479-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23587648

ABSTRACT

Connexins are thought to solely mediate cell-to-cell communication by forming gap junction channels composed of two membrane-spanning hemichannels positioned end-to-end. However, many if not all connexin isoforms also form functional hemichannels (i.e., the precursors of complete channels) that mediate the rapid exchange of ions, second messengers and metabolites between the cell interior and the interstitial space. Electrical and molecular signaling via connexin hemichannels is now widely recognized to be important in many physiological scenarios and pathological conditions. Indeed, mutations in connexins that alter hemichannel function have been implicated in several diseases. Here, we present a comprehensive overview of how hemichannel activity is tightly regulated by membrane potential and the external calcium concentration. In addition, we discuss the genetic mutations known to alter hemichannel function and their deleterious effects, of which a better understanding is necessary to develop novel therapeutic approaches for diseases caused by hemichannel dysfunction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Subject(s)
Calcium/metabolism , Connexins/metabolism , Extracellular Fluid/metabolism , Membrane Potentials/physiology , Animals , Connexins/genetics , Gap Junctions/physiology , Humans , Ion Channel Gating/physiology , Ion Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...