Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Virol ; 97(3): e0176322, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36995092

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Ubiquitin Thiolesterase , Child , Humans , Deubiquitinating Enzymes , Herpesvirus 8, Human/physiology , HIV Infections/complications , Lymphoma, Primary Effusion , Protein Kinases/genetics , Protein Kinases/metabolism , Sarcoma, Kaposi/metabolism , Sarcoma, Kaposi/pathology , Sarcoma, Kaposi/virology , Ubiquitin Thiolesterase/genetics , Viral Proteins/genetics
2.
Elife ; 112022 06 16.
Article in English | MEDLINE | ID: mdl-35708309

ABSTRACT

Numerous receptor tyrosine kinases and immune receptors activate phospholipase C-γ (PLC-γ) isozymes at membranes to control diverse cellular processes including phagocytosis, migration, proliferation, and differentiation. The molecular details of this process are not well understood. Using hydrogen-deuterium exchange mass spectrometry, we show that PLC-γ1 is relatively inert to lipid vesicles that contain its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2), unless first bound to the kinase domain of the fibroblast growth factor receptor (FGFR1). Exchange occurs throughout PLC-γ1 and is exaggerated in PLC-γ1 containing an oncogenic substitution (D1165H) that allosterically activates the lipase. These data support a model whereby initial complex formation shifts the conformational equilibrium of PLC-γ1 to favor activation. This receptor-induced priming of PLC-γ1 also explains the capacity of a kinase-inactive fragment of FGFR1 to modestly enhance the lipase activity of PLC-γ1 operating on lipid vesicles but not a soluble analog of PIP2 and highlights potential cooperativity between receptor engagement and membrane proximity. Priming is expected to be greatly enhanced for receptors embedded in membranes and nearly universal for the myriad of receptors and co-receptors that bind the PLC-γ isozymes.


Subject(s)
Isoenzymes , Type C Phospholipases , Allosteric Regulation , Enzyme Activation , Isoenzymes/metabolism , Lipase/metabolism , Lipids , Phospholipase C gamma/metabolism , Phosphorylation , Type C Phospholipases/metabolism
3.
Genetics ; 221(2)2022 05 31.
Article in English | MEDLINE | ID: mdl-35404465

ABSTRACT

Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and regulates numerous aspects of genome organization and function. Loss-of-function mutations in Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt development. Set8/KMT5A also has non-histone substrates, making it difficult to determine which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally substitute for Set8 during Drosophila development and that the catalytic SET domains of the two enzymes are fully interchangeable. We also uncovered a role in eye development for the N-terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set820/20 null mutants are inviable, we found that an R634G mutation in Set8 predicted from in vitro experiments to ablate catalytic activity resulted in viable adults. Additionally, Set8(R634G) mutants retain significant, albeit reduced, H4K20me1, indicating that the R634G mutation does not eliminate catalytic activity in vivo and is functionally hypomorphic rather than null. Flies engineered to express only unmodifiable H4 histones (H4K20A) can also complete development, but are phenotypically distinct from H4K20R, Set820/20 null, and Set8R634G mutants. Taken together, our results demonstrate functional conservation of KMT5A and Set8 enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.


Subject(s)
Histones , Lysine , Animals , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Lysine/genetics , Mammals , Mutation , Phenotype
4.
EMBO J ; 41(3): e108823, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34942047

ABSTRACT

Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Amino Acid Motifs , Catalytic Domain , Humans , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
5.
Amino Acids ; 50(1): 79-94, 2018 01.
Article in English | MEDLINE | ID: mdl-29071531

ABSTRACT

Plant NADPH oxidases also known as respiratory burst oxidase homologs (Rbohs) are a family of membrane-bound enzymes that play diverse roles in the defense response and morphogenetic processes via regulated generation of reactive oxygen species. Rbohs are associated with a variety of functions, although the reason for this is not clear. To evaluate using bioinformatics, the possible mechanisms for the observed functional diversity within the plant kingdom, 127 Rboh protein sequences representing 26 plant species were analyzed. Multiple clusters were identified with gene duplications that were both dicot as well as monocot-specific. The N-terminal sequences were observed to be highly variable. The conserved cysteine (equivalent of Cys890) in C-terminal of AtRbohD suggested that the redox-based modification like S-nitrosylation may regulate the activity of other Rbohs. Three-dimensional models corresponding to the N-terminal domain for Rbohs from Arabidopsis thaliana and Oryza sativa were constructed and molecular dynamics studies were carried out to study the role of Ca2+ in the folding of Rboh proteins. Certain mutations indicated possibly affect the structure and function of the plant NADPH oxidases, thereby providing the rationale for further experimental validation.


Subject(s)
NADPH Oxidases/chemistry , NADPH Oxidases/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Binding Sites , Calcium/metabolism , EF Hand Motifs , Evolution, Molecular , Gene Duplication , Models, Molecular , NADP/metabolism , NADPH Oxidases/classification , NADPH Oxidases/genetics , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Protein Binding , Protein Domains , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/metabolism
6.
Proc Natl Acad Sci U S A ; 113(28): 7876-81, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27342859

ABSTRACT

Viruses depend upon the host cell for manufacturing components of progeny virions. To mitigate the inextricable dependence on host cell protein synthesis, viruses can modulate protein synthesis through a variety of mechanisms. We report that the viral protein kinase (vPK) encoded by open reading frame 36 (ORF36) of Kaposi's sarcoma-associated herpesvirus (KSHV) enhances protein synthesis by mimicking the function of the cellular protein S6 kinase (S6KB1). Similar to S6KB1, vPK phosphorylates the ribosomal S6 protein and up-regulates global protein synthesis. vPK also augments cellular proliferation and anchorage-independent growth. Furthermore, we report that both vPK and S6KB1 phosphorylate the enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) and that both kinases promote endothelial capillary tubule formation.


Subject(s)
Herpesvirus 8, Human/enzymology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Viral Proteins/metabolism , Computer Simulation , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Models, Molecular , Ribosomal Protein S6 Kinases, 70-kDa/chemistry , Substrate Specificity , Viral Proteins/chemistry
7.
Mol Biol Cell ; 26(8): 1559-74, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25694448

ABSTRACT

Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.


Subject(s)
Cell Nucleus/metabolism , Drosophila Proteins/chemistry , Drosophila melanogaster/metabolism , Histones/genetics , Transcription, Genetic/physiology , Tumor Suppressor Proteins/chemistry , Amino Acid Sequence , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Female , Histones/metabolism , Microscopy, Confocal , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
Mol Biol Cell ; 25(5): 712-27, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24403601

ABSTRACT

Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.


Subject(s)
Lipid Metabolism , Phospholipid Transfer Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Homeostasis , Intracellular Membranes/metabolism , Models, Molecular , Phospholipases/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Spores, Fungal/metabolism
9.
Mol Pharmacol ; 85(4): 586-97, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24435554

ABSTRACT

The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , HSP90 Heat-Shock Proteins/metabolism , Serum Response Element , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , GTP-Binding Protein alpha Subunits, G12-G13/genetics , HEK293 Cells , Humans , Mutation , Phylogeny , Protein Binding , Signal Transduction , Transcriptional Activation , rho GTP-Binding Proteins/metabolism
10.
PLoS Pathog ; 8(11): e1003040, 2012.
Article in English | MEDLINE | ID: mdl-23166501

ABSTRACT

Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGßγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism.


Subject(s)
Entamoeba histolytica/immunology , Entamoebiasis/immunology , GTP-Binding Protein alpha Subunits/immunology , Protozoan Proteins/immunology , Virulence Factors/immunology , Animals , CHO Cells , Cricetinae , Cricetulus , Crystallography, X-Ray , Entamoeba histolytica/enzymology , Entamoeba histolytica/genetics , Entamoebiasis/enzymology , Entamoebiasis/genetics , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , Gene Expression Regulation/immunology , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Humans , Jurkat Cells , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Rho Guanine Nucleotide Exchange Factors , Transcription, Genetic/immunology , Virulence Factors/biosynthesis , Virulence Factors/chemistry
11.
PLoS One ; 7(8): e42633, 2012.
Article in English | MEDLINE | ID: mdl-22880057

ABSTRACT

Plants recognize microbes via specific pattern recognition receptors that are activated by microbe-associated molecular patterns (MAMPs), resulting in MAMP-triggered immunity (MTI). Successful pathogens bypass MTI in genetically diverse hosts via deployment of effectors (virulence factors) that inhibit MTI responses, leading to pathogen proliferation. Plant pathogenic bacteria like Pseudomonas syringae utilize a type III secretion system to deliver effectors into cells. These effectors can contribute to pathogen virulence or elicit disease resistance, depending upon the host plant genotype. In disease resistant genotypes, intracellular immune receptors, typically belonging to the nucleotide binding leucine-rich repeat family of proteins, perceive bacterial effector(s) and initiate downstream defense responses (effector triggered immunity) that include the hypersensitive response, and transcriptional re-programming leading to various cellular outputs that collectively halt pathogen growth. Nucleotide binding leucine-rich repeat sensors can be indirectly activated via perturbation of a host protein acting as an effector target. AvrRpm1 is a P. syringae type III effector. Upon secretion into the host cell, AvrRpm1 is acylated by host enzymes and directed to the plasma membrane, where it contributes to virulence. This is correlated with phosphorylation of Arabidopsis RIN4 in vivo. RIN4 is a negative regulator of MAMP-triggered immunity, and its modification in the presence of four diverse type III effectors, including AvrRpm1, likely enhances this RIN4 regulatory function. The RPM1 nucleotide binding leucine-rich repeat sensor perceives RIN4 perturbation in disease resistant plants, leading to a successful immune response. Here, demonstrate that AvrRpm1 has a fold homologous to the catalytic domain of poly(ADP-ribosyl) polymerase. Site-directed mutagenesis of each residue in the putative catalytic triad, His63-Tyr122-Asp185 of AvrRpm1, results in loss of both AvrRpm1-dependent virulence and AvrRpm1-mediated activation of RPM1, but, surprisingly, causes a gain of function: the ability to activate the RPS2 nucleotide binding leucine-rich repeat sensor.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Bacterial Proteins/genetics , Mutation, Missense/genetics , Plant Immunity/immunology , ADP Ribose Transferases/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Carrier Proteins/metabolism , Conserved Sequence , Intracellular Signaling Peptides and Proteins , Molecular Sequence Data , Poly(ADP-ribose) Polymerases/chemistry , Pseudomonas syringae/pathogenicity , Structural Homology, Protein , Structure-Activity Relationship , Virulence
12.
Infect Immun ; 80(10): 3693-705, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22802344

ABSTRACT

Yersinia pestis, the causative agent of plague, evolved from the gastrointestinal pathogen Yersinia pseudotuberculosis. Both species have numerous type Va autotransporters, most of which appear to be highly conserved. In Y. pestis CO92, the autotransporter genes yapK and yapJ share a high level of sequence identity. By comparing yapK and yapJ to three homologous genes in Y. pseudotuberculosis IP32953 (YPTB0365, YPTB3285, and YPTB3286), we show that yapK is conserved in Y. pseudotuberculosis, while yapJ is unique to Y. pestis. All of these autotransporters exhibit >96% identity in the C terminus of the protein and identities ranging from 58 to 72% in their N termini. By extending this analysis to include homologous sequences from numerous Y. pestis and Y. pseudotuberculosis strains, we determined that these autotransporters cluster into a YapK (YPTB3285) class and a YapJ (YPTB3286) class. The YPTB3286-like gene of most Y. pestis strains appears to be inactivated, perhaps in favor of maintaining yapJ. Since autotransporters are important for virulence in many bacterial pathogens, including Y. pestis, any change in autotransporter content should be considered for its impact on virulence. Using established mouse models of Y. pestis infection, we demonstrated that despite the high level of sequence identity, yapK is distinct from yapJ in its contribution to disseminated Y. pestis infection. In addition, a mutant lacking both of these genes exhibits an additive attenuation, suggesting nonredundant roles for yapJ and yapK in systemic Y. pestis infection. However, the deletion of the homologous genes in Y. pseudotuberculosis does not seem to impact the virulence of this organism in orogastric or systemic infection models.


Subject(s)
Bacterial Proteins/metabolism , Evolution, Molecular , Gene Expression Regulation, Bacterial/physiology , Yersinia pestis/metabolism , Yersinia pseudotuberculosis/metabolism , Animals , Bacterial Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Computational Biology , Female , Gene Deletion , Lung/microbiology , Lymph Nodes/microbiology , Mice , Mice, Inbred C57BL , Phylogeny , Plague/microbiology , Plasmids , Spleen/microbiology , Virulence , Yersinia pestis/classification , Yersinia pestis/pathogenicity , Yersinia pseudotuberculosis/classification , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/microbiology
13.
Proc Natl Acad Sci U S A ; 109(19): 7275-9, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22529365

ABSTRACT

Proteins with similar crystal structures can have dissimilar rates of substrate binding and catalysis. Here we used molecular dynamics simulations and biochemical analysis to determine the role of intradomain and interdomain motions in conferring distinct activation rates to two Gα proteins, Gα(i1) and GPA1. Despite high structural similarity, GPA1 can activate itself without a receptor, whereas Gα(i1) cannot. We found that motions in these proteins vary greatly in type and frequency. Whereas motion is greatest in the Ras domain of Gα(i1), it is greatest in helices αA and αB from the helical domain of GPA1. Using protein chimeras, we show that helix αA from GPA1 is sufficient to confer rapid activation to Gα(i1). Gα(i1) has less intradomain motion than GPA1 and instead displays interdomain displacement resembling that observed in a receptor-heterotrimer crystal complex. Thus, structurally similar proteins can have distinct atomic motions that confer distinct activation mechanisms.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Amino Acid Sequence , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/chemistry , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding
14.
J Biol Chem ; 286(34): 30107-18, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21712381

ABSTRACT

Heterotrimeric G protein complexes are conserved from plants to mammals, but the complexity of each system varies. Arabidopsis thaliana contains one Gα, one Gß (AGB1), and at least three Gγ subunits, allowing it to form three versions of the heterotrimer. This plant model is ideal for genetic studies because mammalian systems contain hundreds of unique heterotrimers. The activation of these complexes promotes interactions between both the Gα subunit and the Gßγ dimer with enzymes and scaffolds to propagate signaling to the cytoplasm. However, although effectors of Gα and Gß are known in mammals, no Gß effectors were previously known in plants. Toward identifying AGB1 effectors, we genetically screened for dominant mutations that suppress Gß-null mutant (agb1-2) phenotypes. We found that overexpression of acireductone dioxygenase 1 (ARD1) suppresses the 2-day-old etiolated phenotype of agb1-2. ARD1 is homologous to prokaryotic and eukaryotic ARD proteins; one function of ARDs is to operate in the methionine salvage pathway. We show here that ARD1 is an active metalloenzyme, and AGB1 and ARD1 both control embryonic hypocotyl length by modulating cell division; they also may contribute to the production of ethylene, a product of the methionine salvage pathway. ARD1 physically interacts with AGB1, and ARD enzymatic activity is stimulated by AGB1 in vitro. The binding interface on AGB1 was deduced using a comparative evolutionary approach and tested using recombinant AGB1 mutants. A possible mechanism for AGB1 activation of ARD1 activity was tested using directed mutations in a loop near the substrate-binding site.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Division/physiology , Dioxygenases/metabolism , GTP-Binding Protein beta Subunits/metabolism , Hypocotyl/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Binding Sites , Dioxygenases/genetics , Ethylenes/biosynthesis , GTP-Binding Protein beta Subunits/genetics , Genes, Dominant , Hypocotyl/genetics , Methionine/genetics , Methionine/metabolism , Mutation , Protein Binding , Protein Structure, Secondary , Recombinant Proteins
15.
Sci Signal ; 4(159): ra8, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21304159

ABSTRACT

In animals, heterotrimeric guanine nucleotide-binding protein (G protein) signaling is initiated by G protein-coupled receptors (GPCRs), which activate G protein α subunits; however, the plant Arabidopsis thaliana lacks canonical GPCRs, and its G protein α subunit (AtGPA1) is self-activating. To investigate how AtGPA1 becomes activated, we determined its crystal structure. AtGPA1 is structurally similar to animal G protein α subunits, but our crystallographic and biophysical studies revealed that it had distinct properties. Notably, the helical domain of AtGPA1 displayed pronounced intrinsic disorder and a tendency to disengage from the Ras domain of the protein. Domain substitution experiments showed that the helical domain of AtGPA1 was necessary for self-activation and sufficient to confer self-activation to an animal G protein α subunit. These findings reveal the structural basis for a mechanism for G protein activation in Arabidopsis that is distinct from the well-established mechanism found in animals.


Subject(s)
Arabidopsis Proteins/chemistry , GTP-Binding Protein alpha Subunits/chemistry , Protein Structure, Secondary , Signal Transduction , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circular Dichroism , Crystallization , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Folding , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Sequence Homology, Amino Acid , X-Ray Diffraction
16.
J Neuroimmune Pharmacol ; 6(2): 230-46, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21336563

ABSTRACT

Advances in the last several years have enhanced mechanistic understanding of Nef-induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed. The recent progress has been dependent on conservative mutations and multi-protein binding assays. The poorly understood Nef functions of p21 activated protein kinase (PAK2) activation, enhancement of virion infectivity, and inhibition of immunoglobulin class switching are also likely to involve ternary complexes and non-canonical interactions. Hence, investigation of these latter Nef functions should benefit from a similar approach. Six historically used alanine substitutions for determining structure-function relationships of Nef are discussed. These are M20A, E62A/E63A/E64A/E65A (AAAA), P72A/P75A (AXXA), R106A, L164A/L165A, and D174A/D175A. Investigations of less-disruptive mutations in place of AAAA and AXXA have led to different interpretations of mechanism. Two recent examples of this alternate approach, F191I for studying PAK2 activation and D123E for the critical residue D123 are discussed. The implications of the new findings and the resulting new paradigm for Nef structure-function are discussed with respect to creating a map of Nef functions on the protein surface. We report the results of a PPI-Pred analysis for protein-protein interfaces. There are three predicted patches produced by the analysis which describe regions consistent with the currently known mutational analyses of Nef function.


Subject(s)
HIV-1/immunology , Intracellular Fluid/immunology , Signal Transduction/immunology , nef Gene Products, Human Immunodeficiency Virus/physiology , Animals , CD4 Antigens/physiology , Down-Regulation/immunology , Histocompatibility Antigens Class I/physiology , Humans , nef Gene Products, Human Immunodeficiency Virus/metabolism
17.
J Biol Chem ; 286(15): 13143-50, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21325279

ABSTRACT

It has long been known that animal heterotrimeric Gαßγ proteins are activated by cell-surface receptors that promote GTP binding to the Gα subunit and dissociation of the heterotrimer. In contrast, the Gα protein from Arabidopsis thaliana (AtGPA1) can activate itself without a receptor or other exchange factor. It is unknown how AtGPA1 is regulated by Gßγ and the RGS (regulator of G protein signaling) protein AtRGS1, which is comprised of an RGS domain fused to a receptor-like domain. To better understand the cycle of G protein activation and inactivation in plants, we purified and reconstituted AtGPA1, full-length AtRGS1, and two putative Gßγ dimers. We show that the Arabidopsis Gα protein binds to its cognate Gßγ dimer directly and in a nucleotide-dependent manner. Although animal Gßγ dimers inhibit GTP binding to the Gα subunit, AtGPA1 retains fast activation in the presence of its cognate Gßγ dimer. We show further that the full-length AtRGS1 protein accelerates GTP hydrolysis and thereby counteracts the fast nucleotide exchange rate of AtGPA1. Finally, we show that AtGPA1 is less stable in complex with GDP than in complex with GTP or the Gßγ dimer. Molecular dynamics simulations and biophysical studies reveal that altered stability is likely due to increased dynamic motion in the N-terminal α-helix and Switch II of AtGPA1. Thus, despite profound differences in the mechanisms of activation, the Arabidopsis G protein is readily inactivated by its cognate RGS protein and forms a stable, GDP-bound, heterotrimeric complex similar to that found in animals.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Guanosine Triphosphate/metabolism , RGS Proteins/metabolism , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Enzyme Activation/physiology , GTP-Binding Protein alpha Subunits/genetics , Guanosine Triphosphate/genetics , Hydrolysis , Protein Structure, Quaternary , Protein Structure, Secondary , RGS Proteins/genetics
18.
J Biol Chem ; 286(14): 12141-8, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21242305

ABSTRACT

SmgGDS is an atypical guanine nucleotide exchange factor (GEF) that promotes both cell proliferation and migration and is up-regulated in several types of cancer. SmgGDS has been previously shown to activate a wide variety of small GTPases, including the Ras family members Rap1a, Rap1b, and K-Ras, as well as the Rho family members Cdc42, Rac1, Rac2, RhoA, and RhoB. In contrast, here we show that SmgGDS exclusively activates RhoA and RhoC among a large panel of purified GTPases. Consistent with the well known properties of GEFs, this activation is catalytic, and SmgGDS preferentially binds to nucleotide-depleted RhoA relative to either GDP- or GTPγS-bound forms. However, mutational analyses indicate that SmgGDS utilizes a distinct exchange mechanism compared with canonical GEFs and in contrast to known GEFs requires RhoA to retain a polybasic region for activation. A homology model of SmgGDS highlights an electronegative surface patch and a highly conserved binding groove. Mutation of either area ablates the ability of SmgGDS to activate RhoA. Finally, the in vitro specificity of SmgGDS for RhoA and RhoC is retained in cells. Together, these results indicate that SmgGDS is a bona fide GEF that specifically activates RhoA and RhoC through a unique mechanism not used by other Rho family exchange factors.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Protein Isoforms/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Blotting, Western , Cell Line , Chromatography, Gel , Circular Dichroism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Humans , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , rho GTP-Binding Proteins/chemistry , rho GTP-Binding Proteins/genetics , rhoA GTP-Binding Protein/chemistry , rhoA GTP-Binding Protein/genetics
19.
PLoS Comput Biol ; 6(10): e1000962, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20976244

ABSTRACT

Heterotrimeric G proteins act as the physical nexus between numerous receptors that respond to extracellular signals and proteins that drive the cytoplasmic response. The Gα subunit of the G protein, in particular, is highly constrained due to its many interactions with proteins that control or react to its conformational state. Various organisms contain differing sets of Gα-interacting proteins, clearly indicating that shifts in sequence and associated Gα functionality were acquired over time. These numerous interactions constrained much of Gα evolution; yet Gα has diversified, through poorly understood processes, into several functionally specialized classes, each with a unique set of interacting proteins. Applying a synthetic sequence-based approach to mammalian Gα subunits, we established a set of seventy-five evolutionarily important class-distinctive residues, sites where a single Gα class is differentiated from the three other classes. We tested the hypothesis that shifts at these sites are important for class-specific functionality. Importantly, we mapped known and well-studied class-specific functionalities from all four mammalian classes to sixteen of our class-distinctive sites, validating the hypothesis. Our results show how unique functionality can evolve through the recruitment of residues that were ancestrally functional. We also studied acquisition of functionalities by following these evolutionarily important sites in non-mammalian organisms. Our results suggest that many class-distinctive sites were established early on in eukaryotic diversification and were critical for the establishment of new Gα classes, whereas others arose in punctuated bursts throughout metazoan evolution. These Gα class-distinctive residues are rational targets for future structural and functional studies.


Subject(s)
Evolution, Molecular , GTP-Binding Protein alpha Subunits , Models, Genetic , Models, Molecular , Signal Transduction/genetics , Adenylyl Cyclases , Amino Acid Sequence , Animals , Databases, Protein , Eukaryota/genetics , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/genetics , Humans , Information Theory , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Sequence Alignment
20.
Retrovirology ; 7: 77, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20863404

ABSTRACT

BACKGROUND: The HIV-1 pathogenic factor, Nef, is a multifunctional protein present in the cytosol and on membranes of infected cells. It has been proposed that a spatial and temporal regulation of the conformation of Nef sequentially matches Nef's multiple functions to the process of virion production. Further, it has been suggested that dimerization is required for multiple Nef activities. A dimerization interface has been proposed based on intermolecular contacts between Nefs within hexagonal Nef/FynSH3 crystals. The proposed dimerization interface consists of the hydrophobic B-helix and flanking salt bridges between R105 and D123. Here, we test whether Nef self-association is mediated by this interface and address the overall significance of oligomerization. RESULTS: By co-immunoprecipitation assays, we demonstrated that HIV-1Nef exists as monomers and oligomers with about half of the Nef protomers oligomerized. Nef oligomers were found to be present in the cytosol and on membranes. Removal of the myristate did not enhance the oligomerization of soluble Nef. Also, SIVNef oligomerizes despite lacking a dimerization interface functionally homologous to that proposed for HIV-1Nef. Moreover, HIV-1Nef and SIVNef form hetero-oligomers demonstrating the existence of homologous oligomerization interfaces that are distinct from that previously proposed (R105-D123). Intracellular cross-linking by formaldehyde confirmed that SF2Nef dimers are present in intact cells, but surprisingly self-association was dependent on R105, but not D123. SIV(MAC239)Nef can be cross-linked at its only cysteine, C55, and SF2Nef is also cross-linked, but at C206 instead of C55, suggesting that Nefs exhibit multiple dimeric structures. ClusPro dimerization analysis of HIV-1Nef homodimers and HIV-1Nef/SIVNef heterodimers identified a new potential dimerization interface, including a dibasic motif at R105-R106 and a six amino acid hydrophobic surface. CONCLUSIONS: We have demonstrated significant levels of intracellular Nef oligomers by immunoprecipitation from cellular extracts. However, our results are contrary to the identification of salt bridges between R105 and D123 as necessary for self-association. Importantly, binding between HIV-1Nef and SIVNef demonstrates evolutionary conservation and therefore significant function(s) for oligomerization. Based on modeling studies of Nef self-association, we propose a new dimerization interface. Finally, our findings support a stochastic model of Nef function with a dispersed intracellular distribution of Nef oligomers.


Subject(s)
HIV-1/metabolism , nef Gene Products, Human Immunodeficiency Virus/chemistry , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cytosol/metabolism , Humans , Immunoprecipitation , Models, Molecular , Protein Conformation , Protein Multimerization , Simian Immunodeficiency Virus/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...