Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Data Brief ; 48: 109104, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37089202

ABSTRACT

Two novel mycobacteriophages (Prann and LeoAvram) belonging to the family Siphoviridae were isolated from soil samples of Northern India. Genomic DNA of both the phages was extracted, and further sequenced using Illumina technology. Complete genome annotation of both the isolates was performed using DNA Master. Prann and LeoAvram had linear genomes of 68398bp and 47079bp, respectively, with G+C contents of 60-70%. A total of 99 and 75 ORFs were predicted in Prann and LeoAvram, respectively. Based on sequence similarity to known phage proteins, functions were assigned to 44 and 53 genes, respectively. These proteins could be classified into five major groups, viz., phage structural proteins, proteins for recombination, lytic enzymes, proteins involved in DNA / RNA metabolism, and in regulation. Mycobacterium smegmatis was used in this work as a safe surrogate for Mycobacterium tuberculosis, the causative agent for tuberculosis, a major infectious disease worldwide with developing antibiotic resistance. This is the first report of M. smegmatis phages from Northern India.

2.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32855246

ABSTRACT

The complete genome sequence of the unique virulent bacteriophage BRock, isolated from compost on Streptomyces sp. strain SFB5A, was determined. BRock is a myovirus with a 112,523-bp genome containing a GC content of 52.3%. There were 188 protein-coding genes predicted, including structural and enzymatic proteins, but none predicted for lysogeny. Twenty-nine tRNAs were predicted.

3.
mSphere ; 4(3)2019 05 22.
Article in English | MEDLINE | ID: mdl-31118307

ABSTRACT

Bordetella pertussis is the causative agent of whooping cough, a serious respiratory illness affecting children and adults, associated with prolonged cough and potential mortality. Whooping cough has reemerged in recent years, emphasizing a need for increased knowledge of basic mechanisms of B. pertussis growth and pathogenicity. While previous studies have provided insight into in vitro gene essentiality of this organism, very little is known about in vivo gene essentiality, a critical gap in knowledge, since B. pertussis has no previously identified environmental reservoir and is isolated from human respiratory tract samples. We hypothesize that the metabolic capabilities of B. pertussis are especially tailored to the respiratory tract and that many of the genes involved in B. pertussis metabolism would be required to establish infection in vivo In this study, we generated a diverse library of transposon mutants and then used it to probe gene essentiality in vivo in a murine model of infection. Using the CON-ARTIST pipeline, 117 genes were identified as conditionally essential at 1 day postinfection, and 169 genes were identified as conditionally essential at 3 days postinfection. Most of the identified genes were associated with metabolism, and we utilized two existing genome-scale metabolic network reconstructions to probe the effects of individual essential genes on biomass synthesis. This analysis suggested a critical role for glucose metabolism and lipooligosaccharide biosynthesis in vivo This is the first genome-wide evaluation of in vivo gene essentiality in B. pertussis and provides tools for future exploration.IMPORTANCE Our study describes the first in vivo transposon sequencing (Tn-seq) analysis of B. pertussis and identifies genes predicted to be essential for in vivo growth in a murine model of intranasal infection, generating key resources for future investigations into B. pertussis pathogenesis and vaccine design.


Subject(s)
Bordetella pertussis/genetics , Bordetella pertussis/metabolism , DNA Transposable Elements , Genes, Essential , Whooping Cough/microbiology , Animals , Gene Library , Genome, Bacterial , Glucose/metabolism , Lipopolysaccharides/biosynthesis , Mice , Sequence Analysis, DNA
4.
Genome Announc ; 4(2)2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27103735

ABSTRACT

In this study the complete genome sequence of the unique bacteriophage Eldridge, isolated from soil using ITALIC! Bacillus megateriumas the host organism, was determined. Eldridge is a myovirus with a genome consisting of 242 genes and is unique when compared to phage sequences in GenBank.

5.
Microbes Infect ; 13(10): 871-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21609777

ABSTRACT

Bordetellosis is an upper respiratory disease of turkeys caused by Bordetella avium in which the bacteria attach specifically to ciliated respiratory epithelial cells. Little is known about the mechanisms of pathogenesis of this disease, which has a negative impact in the commercial turkey industry. In this study, we produced a novel explant organ culture system that was able to successfully reproduce pathogenesis of B. avium in vitro, using tracheal tissue derived from 26 day-old turkey embryos. Treatment of the explants with whole cells of B. avium virulent strain 197N and culture supernatant, but not lipopolysaccharide (LPS) or tracheal cytotoxin (TCT), specifically induced apoptosis in ciliated cells, as shown by annexin V and TUNEL staining. LPS and TCT are known virulence factors of Bordetella pertussis, the causative agent of whooping cough. Treatment with whole cells of B. avium and LPS specifically induced NO response in ciliated cells, shown by uNOS staining and diaphorase activity. The explant system is being used as a model to elucidate specific molecules responsible for the symptoms of bordetellosis.


Subject(s)
Apoptosis , Bordetella avium/pathogenicity , Nitric Oxide Synthase/metabolism , Trachea/microbiology , Trachea/pathology , Animals , Annexin A5/analysis , Disease Models, Animal , In Situ Nick-End Labeling , Organ Culture Techniques , Turkeys
6.
Infect Immun ; 79(6): 2423-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21464081

ABSTRACT

Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica cause respiratory tract disease in mammals, whereas Bordetella avium causes respiratory tract disease in avian hosts. While there are striking similarities between the diseases caused by the mammalian- and avian-adapted bordetellae, differences at the genetic level may account for their different host tropisms. Bacterial pathogens utilize the chaperone-usher pathway to assemble extracellular multisubunit structures (fimbriae) that play a role in virulence. Fimbriae of the mammalian bordetellae mediate attachment to the host respiratory epithelium. They are assembled by a single chaperone/usher system encoded by the fimbrial biogenesis operon fimA-D. B. avium contains a homologous fimbrial operon (BAV1965-1962), and we report here the functionality of this locus. Reverse transcription (RT)-PCR and quantitative PCR analyses demonstrated that transcription of the locus is regulated by temperature. By immuno-transmission electron microscopy (TEM), BAV1965-containing fimbriae were observed on bacteria grown at 37°C but not those grown at 22°C. A mutant in which BAV1965-1962 was deleted displayed significantly lower levels of adherence to turkey tracheal rings than the wild type. Thus, the BAV1965-1962 fimbrial locus is functional, its expression is regulated in response to temperature, and it produces fimbriae involved in adherence to host respiratory tract tissue.


Subject(s)
Bacterial Adhesion/physiology , Bordetella Infections/veterinary , Bordetella avium/physiology , Fimbriae, Bacterial/physiology , Poultry Diseases/microbiology , Trachea/microbiology , Turkeys/microbiology , Animals , Bacterial Adhesion/genetics , Bordetella Infections/microbiology , Bordetella avium/genetics , Bordetella avium/pathogenicity , Fimbriae, Bacterial/genetics , Genes, Bacterial/genetics , Genetic Loci/genetics , Reverse Transcriptase Polymerase Chain Reaction , Temperature
7.
Infect Immun ; 78(6): 2370-6, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20351141

ABSTRACT

Bordetella avium causes bordetellosis in birds, a disease similar to whooping cough caused by Bordetella pertussis in children. B. avium agglutinates guinea pig erythrocytes via an unknown mechanism. Loss of hemagglutination ability results in attenuation. We report the use of transposon mutagenesis to identify two genes required for hemagglutination. The genes (hagA and hagB) were adjacent and divergently oriented and had no orthologs in the genomes of other Bordetella species. Construction of in-frame, unmarked mutations in each gene allowed examination of the role of each in conferring erythrocyte agglutination, explanted tracheal cell adherence, and turkey poult tracheal colonization. In all of the in vitro and in vivo assays, the requirement for the trans-acting products of hagA and hagB (HagA and HagB) was readily shown. Western blotting, using antibodies to purified HagA and HagB, revealed proteins of the predicted sizes of HagA and HagB in an outer membrane-enriched fraction. Antiserum to HagB, but not HagA, blocked B. avium erythrocyte agglutination and explanted turkey tracheal ring binding. Bioinformatic analysis indicated the similarity of HagA and HagB to several two-component secretory apparatuses in which one product facilitates the exposition of the other. HagB has the potential to serve as a useful immunogen to protect turkeys against colonization and subsequent disease.


Subject(s)
Bacterial Proteins/genetics , Bordetella avium/pathogenicity , Hemagglutination , Hemagglutinins/genetics , Animals , Antibodies, Bacterial/immunology , Bacterial Proteins/metabolism , Cell Adhesion , Cells, Cultured , DNA Transposable Elements , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Epithelial Cells/microbiology , Erythrocytes/microbiology , Gene Order , Guinea Pigs , Hemagglutinins/metabolism , Molecular Sequence Data , Mutagenesis, Insertional , Poultry Diseases/microbiology , Sequence Analysis, DNA , Sequence Deletion , Trachea/microbiology , Turkeys
8.
J Bacteriol ; 188(16): 6002-15, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16885469

ABSTRACT

Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.


Subject(s)
Bordetella/classification , Bordetella/genetics , Poultry/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Cell Surface Extensions , Chromosomes, Bacterial , Genetic Variation , Genome, Bacterial , Molecular Sequence Data
9.
Infect Immun ; 71(5): 2591-7, 2003 May.
Article in English | MEDLINE | ID: mdl-12704133

ABSTRACT

Bordetella avium causes an upper respiratory tract disease (bordetellosis) in avian species. Commercially raised turkeys are particularly susceptible. Like other pathogenic members of the genus Bordetella (B. pertussis and B. bronchiseptica) that infect mammals, B. avium binds preferentially to ciliated tracheal epithelial cells and produces similar signs of disease. These similarities prompted us to study bordetellosis in turkeys as a possible nonmammalian model for whooping cough, the exclusively human childhood disease caused by B. pertussis. One impediment to accepting such a host-pathogen model as relevant to the human situation is evidence suggesting that B. avium does not express a number of the factors known to be associated with virulence in the other two Bordetella species. Nevertheless, with signature-tagged mutagenesis, four avirulent mutants that had lesions in genes orthologous to those associated with virulence in B. pertussis and B. bronchiseptica (bvgS, fhaB, fhaC, and fimC) were identified. None of the four B. avium genes had been previously identified as encoding factors associated with virulence, and three of the insertions (in fhaB, bvgS, and fimC) were in genes or gene clusters inferred as being absent or incomplete in B. avium, based upon the lack of DNA sequence similarities in hybridization studies and/or the lack of immunological cross-reactivity of the putative products. We further found that the genotypic arrangements of most of the B. avium orthologues were very similar in all three Bordetella species. In vitro tests, including hemagglutination, tracheal ring binding, and serum sensitivity, helped further define the phenotypes conferred by the mutations. Our findings strengthen the connection between the causative agents and the pathogenesis of bordetellosis in all hosts and may help explain the striking similarities of the histopathologic characteristics of this upper airway disease in avian and mammalian species.


Subject(s)
Bacterial Proteins , Bird Diseases/microbiology , Bordetella Infections/veterinary , Bordetella/pathogenicity , Turkeys/microbiology , Amino Acid Sequence , Animals , Bordetella/genetics , Bordetella Infections/microbiology , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/pathogenicity , Bordetella pertussis/genetics , Bordetella pertussis/pathogenicity , Fimbriae Proteins/genetics , Fimbriae Proteins/physiology , Genes, Bacterial/physiology , Genotype , Molecular Sequence Data , Mutation , Phenotype
10.
J Bacteriol ; 184(23): 6522-31, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12426340

ABSTRACT

The major structural components of the P2 contractile tail are encoded in the FETUD tail gene operon. The sequences of genes F(I) and F(II), encoding the major tail sheath and tail tube proteins, have been reported previously (L. M. Temple, S. L. Forsburg, R. Calendar, and G. E. Christie, Virology 181:353-358, 1991). Sequence analysis of the remainder of this operon and the locations of amber mutations Eam30, Tam5, Tam64, Tam215, Uam25, Uam77, Uam92, and Dam6 and missense mutation Ets55 identified the coding regions for genes E, T, U, and D, completing the sequence determination of the P2 genome. Inspection of the DNA sequence revealed a new open reading frame overlapping the end of the essential tail gene E. Lack of an apparent translation initiation site and identification of a putative sequence for a programmed translational frameshift within the E gene suggested that this new reading frame (E') might be translated as an extension of gene E, following a -1 translational frameshift. Complementation analysis demonstrated that E' was essential for P2 lytic growth. Analysis of fusion polypeptides verified that this reading frame was translated as a -1 frameshift extension of gpE, with a frequency of approximately 10%. The arrangement of these two genes within the tail gene cluster of phage P2 and their coupling via a translational frameshift appears to be conserved among P2-related phages. This arrangement shows a striking parallel to the organization in the tail gene cluster of phage lambda, despite a lack of amino acid sequence similarity between the tail gene products of these phage families.


Subject(s)
Bacteriophage P2/genetics , Frameshifting, Ribosomal , Gene Expression Regulation, Viral , Operon , Viral Tail Proteins/genetics , Amino Acid Sequence , Base Sequence , DNA, Viral/analysis , Molecular Sequence Data , Sequence Analysis, DNA , Viral Tail Proteins/metabolism
11.
Infect Immun ; 70(3): 1219-24, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11854203

ABSTRACT

Bordetella avium causes bordetellosis, an upper respiratory disease of birds. Commercially raised turkeys are particularly susceptible. We report here on the use of a recently described B. avium bacteriophage, Ba1, as a tool for investigating the effects of lysogeny and phage resistance on virulence. We found that lysogeny had no effect on any of the in vivo or in vitro measurements of virulence we employed. However, two-thirds (six of nine) spontaneous phage-resistant mutants of our virulent laboratory strain, 197N, were attenuated. Phage resistance was associated, in all cases, with an inability of the mutants to bind phage. Further tests of the mutants revealed that all had increased sensitivities to surfactants, and increased amounts of incomplete (O-antigen-deficient) lipopolysaccharide (LPS) compared to 197N. Hot phenol-water-extracted 197N LPS inactivated phage in a specific and dose-dependent manner. Acid hydrolysis and removal of lipid A had little effect upon the ability of isolated LPS to inactivate Ba1, suggesting that the core region and possibly the O antigen were required for phage binding. All of the mutants, with one exception, were significantly more sensitive to naive turkey serum and, without exception, significantly less able to bind to tracheal rings in vitro than 197N. Interestingly, the three phage-resistant mutants that remained virulent appeared to be O antigen deficient and were among the mutants that were the most serum sensitive and least able to bind turkey tracheal rings in vitro. This observation allowed us to conclude that even severe defects in tracheal ring binding and serum resistance manifested in vitro were not necessarily indicative of attenuation and that complete LPS may not be required for virulence.


Subject(s)
Bacteriophages/growth & development , Bordetella/pathogenicity , Bordetella/virology , Animals , Bacterial Adhesion , Bacteriophages/drug effects , Lipopolysaccharides/pharmacology , Lysogeny , Surface-Active Agents/pharmacology , Trachea/microbiology , Turkeys
SELECTION OF CITATIONS
SEARCH DETAIL
...