Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38930666

ABSTRACT

Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.

2.
ACS Nano ; 18(1): 1214-1225, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150422

ABSTRACT

By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.

3.
Sci Rep ; 10(1): 5729, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32235906

ABSTRACT

The increase in superconducting transition temperature (TC) of Sn nanostructures in comparison to bulk, was studied. Changes in the phonon density of states (PDOS) of the weakly coupled superconductor Sn were analyzed and correlated with the increase in TC measured by magnetometry. The PDOS of all nanostructured samples shows a slightly increased number of low-energy phonon modes and a strong decrease in the number of high-energy phonon modes in comparison to the bulk Sn PDOS. The phonon densities of states, which were determined previously using nuclear resonant inelastic X-ray scattering, were used to calculate the superconducting transition temperature using the Allen-Dynes-McMillan (ADMM) formalism. Both the calculated as well as the experimentally determined values of TC show an increase compared to the bulk superconducting transition temperature. The good agreement between these values indicates that phonon softening has a major influence on the superconducting transition temperature of Sn nanostructures. The influence of electron confinement effects appears to be minor in these systems.

4.
Materials (Basel) ; 13(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906580

ABSTRACT

Combining various (multi-)ferroic materials into heterostructures is a promising route to enhance their inherent properties, such as the magnetoelectric coupling in BiFeO3 thin films. We have previously reported on the up-to-tenfold increase of the magnetoelectric voltage coefficient α ME in BaTiO3-BiFeO3 multilayers relative to BiFeO3 single layers. Unraveling the origin and mechanism of this enhanced effect is a prerequisite to designing new materials for the application of magnetoelectric devices. By careful variations in the multilayer design we now present an evaluation of the influences of the BaTiO3-BiFeO3 thickness ratio, oxygen pressure during deposition, and double layer thickness. Our findings suggest an interface driven effect at the core of the magnetoelectric coupling effect in our multilayers superimposed on the inherent magnetoelectric coupling of BiFeO3 thin films, which leads to a giant α ME coefficient of 480 V c m -1 Oe-1 for a 16 × (BaTiO3-BiFeO3) superlattice with a 4 . 8 nm double layer periodicity.

5.
ACS Appl Mater Interfaces ; 11(37): 34385-34393, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31449744

ABSTRACT

The recent demonstration of ferroelectricity in ultrathin HfO2 has kickstarted a new wave of research into this material. HfO2 in the orthorhombic phase can be considered the first and only truly nanoscale ferroelectric material that is compatible with silicon-based nanoelectronics applications. In this article, we demonstrate the ferroelectric control of the magnetic properties of cobalt deposited on ultrathin aluminum-doped, atomic layer deposition-grown HfO2 (tHfO2 = 6.5 nm). The ferroelectric effect is shown to control the shape of the magnetic hysteresis, quantified here by the magnetic switching energy. Furthermore, the magnetic properties such as the remanence are modulated by up to 41%. We show that this modulation does not only correlate with the charge accumulation at the interface but also shows an additional component associated with the ferroelectric polarization switching. An in-depth analysis using first order reversal curves shows that the coercive and interaction field distributions of cobalt can be modulated up to, respectively, 5.8% and 10.5% with the ferroelectric polarization reversal.

6.
Nanoscale ; 10(12): 5574-5580, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29521386

ABSTRACT

Correlations were established between the hyperfine field distribution around the Fe atoms, the multiferroic properties, and the high magnetoelectric coefficient in BaTiO3-BiFeO3 multilayer stacks with variable BiFeO3 single layer thickness, down to 5 nm. Of key importance in this study was the deposition of 57Fe - enriched BiFeO3, which enhances the sensitivity of conversion electron Mössbauer spectroscopy by orders of magnitude. The magnetoelectric coefficient αME reaches a maximum of 60.2 V cm-1 Oe-1 at 300 K and at a DC bias field of 2 Tesla for a sample of 15 × (10 nm BaTiO3-5 nm BiFeO3) and is one of the highest values reported so far. Interestingly, the highest αME is connected to a high asymmetry of the hyperfine field distribution of the multilayer composite samples. The possible mechanisms responsible for the strong magnetoelectric coupling are discussed.

7.
Nanotechnology ; 28(47): 475707, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-28961144

ABSTRACT

A new strategy to elaborate (1-3) type multiferroic nanocomposites with controlled dimensions and vertical alignment is presented. The process involves a supported nanoporous alumina layer as a template for growth of free-standing and vertically aligned CoFe2 nanopillars using a room temperature pulsed electrodeposition process. Ba0.70Sr0.30TiO3-CoFe2O4 multiferroic nanocomposites were grown through direct deposition of Ba0.7Sr0.3TiO3 films by radio-frequency sputtering on the top surface of the pillar structure, with in situ simultaneous oxidation of CoFe2 nanopillars. The vertically aligned multiferroic nanocomposites were characterized using various techniques for their structural and physical properties. The large interfacial area between the ferrimagnetic and ferroelectric phases leads to a magnetoelectric voltage coefficient as large as ∼320 mV cm-1 Oe-1 at room temperature, reaching the highest values reported so far for vertically architectured nanocomposite systems. This simple method has great potential for large-scale synthesis of many other hybrid vertically aligned multiferroic heterostructures.

8.
ACS Appl Mater Interfaces ; 9(22): 18956-18965, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28508622

ABSTRACT

The detailed understanding of magnetoelectric (ME) coupling in multiferroic oxide heterostructures is still a challenge. In particular, very little is known to date concerning the impact of the chemical interface structure and unwanted impurities that may be buried within short-period multiferroic BiFeO3-BaTiO3 superlattices during growth. Here, we demonstrate how trace impurities and elemental concentration gradients contribute to high ME voltage coefficients in thin-film superlattices, which are built from 15 double layers of BiFeO3-BaTiO3. Surprisingly, the highest ME voltage coefficient of 55 V cm-1 Oe-1 at 300 K was measured for a superlattice with a few atomic percent of Ba and Ti that diffused into the nominally 5 nm thin BiFeO3 layers, according to analytical transmission electron microscopy. In addition, highly sensitive enhancements of the cation signals were observed in depth profiles by secondary ion mass spectrometry at the interfaces of BaTiO3 and BiFeO3. As these interface features correlate with the ME performance of the samples, they point to the importance of charge effects at the interfaces, that is, to a possible charge mediation of ME coupling in oxide superlattices. The challenge is to provide cleaner materials and processes, as well as a well-defined control of the chemical interface structure, to push forward the application of oxide superlattices in multiferroic ME devices.

9.
Nanotechnology ; 28(16): 165704, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28165330

ABSTRACT

We investigate percolating films of superconducting nanoparticles and observe an evolution from superconducting to metallic to insulating states as the surface coverage of the nanoparticles is decreased. We demonstrate that this evolution is correlated with a reduction in the effective/dominant dimensionality of the system, from 2D to 1D to 0D, and that the physics in each regime is dominated by vortices, phase slips and tunnelling respectively. Finally we construct phase diagrams that map the various observed states as a function of surface coverage (or, equivalently, normal state resistance), temperature and measurement current.

10.
Small ; 13(11)2017 03.
Article in English | MEDLINE | ID: mdl-28067997

ABSTRACT

The combination of lithography and ion implantation is demonstrated to be a suitable method to prepare lateral multilayers. A laterally, compositionally, and magnetically modulated microscale pattern consisting of alternating Co (1.6 µm wide) and Co-CoO (2.4 µm wide) lines has been obtained by oxygen ion implantation into a lithographically masked Au-sandwiched Co thin film. Magnetoresistance along the lines (i.e., current and applied magnetic field are parallel to the lines) reveals an effective positive giant magnetoresistance (GMR) behavior at room temperature. Conversely, anisotropic magnetoresistance and GMR contributions are distinguished at low temperature (i.e., 10 K) since the O-implanted areas become exchange coupled. This planar GMR is principally ascribed to the spatial modulation of coercivity in a spring-magnet-type configuration, which results in 180° Néel extrinsic domain walls at the Co/Co-CoO interfaces. The versatility, in terms of pattern size, morphology, and composition adjustment, of this method offers a unique route to fabricate planar systems for, among others, spintronic research and applications.

11.
J Phys Condens Matter ; 28(19): 196002, 2016 May 18.
Article in English | MEDLINE | ID: mdl-27092595

ABSTRACT

The interplay between magnetocrystalline anisotropy and exchange bias is investigated in CoO/Co bilayer films, which are grown epitaxially on MgO (0 0 1), by magnetization reversal measurements based on the anisotropic magnetoresistance (AMR) effect. While an asymmetric magnetization reversal survives after training for cooling field (CF) along the hard axis, the magnetization reversal becomes symmetric and is dominated in both branches of the hysteresis loop by domain wall motion before and after training for CF along the easy axis. When performing an in-plane hysteresis loop perpendicular to the CF, the hysteresis loop along the easy axis becomes asymmetric: magnetization rotation dominates in the ascending branch, while there is a larger contribution of domain wall motion in the descending branch. Furthermore, the azimuthal angular dependence of the AMR shows two minima after performing a perpendicular hysteresis loop, instead of only one minimum after training. Relying on the extended Fulcomer and Charap model, these effects can be related to an increased deviation of the average uncompensated antiferromagnetic magnetization from the CF direction. This model provides a consistent interpretation of training and asymmetry of the magnetization reversal for epitaxial films with pronounced magnetocrystalline anisotropy as well as for the previously investigated polycrystalline films.

12.
Materials (Basel) ; 9(1)2016 Jan 13.
Article in English | MEDLINE | ID: mdl-28787843

ABSTRACT

Epitaxial multiferroic BaTiO3-BiFeO3 composite thin films exhibit a correlation between the magnetoelectric (ME) voltage coefficient αME and the oxygen partial pressure during growth. The ME coefficient αME reaches high values up to 43 V/(cm·Oe) at 300 K and at 0.25 mbar oxygen growth pressure. The temperature dependence of αME of the composite films is opposite that of recently-reported BaTiO3-BiFeO3 superlattices, indicating that strain-mediated ME coupling alone cannot explain its origin. Probably, charge-mediated ME coupling may play a role in the composite films. Furthermore, the chemically-homogeneous composite films show an oxygen vacancy superstructure, which arises from vacancy ordering on the {111} planes of the pseudocubic BaTiO3-type structure. This work contributes to the understanding of magnetoelectric coupling as a complex and sensitive interplay of chemical, structural and geometrical issues of the BaTiO3-BiFeO3 composite system and, thus, paves the way to practical exploitation of magnetoelectric composites.

13.
ACS Appl Mater Interfaces ; 5(20): 10118-26, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24028676

ABSTRACT

Ferromagnetic single crystalline [100], [110], and [111]-oriented expanded austenite is obtained by plasma nitriding of paramagnetic 316L austenitic stainless steel single crystals at either 300 or 400 °C. After nitriding at 400 °C, the [100] direction appears to constitute the magnetic easy axis due to the interplay between a large lattice expansion and the expected decomposition of the expanded austenite, which results in Fe- and Ni-enriched areas. However, a complex combination of uniaxial (i.e., twofold) and biaxial (i.e., fourfold) in-plane magnetic anisotropies is encountered. It is suggested that the former is related to residual stress-induced effects while the latter is associated to the in-plane projections of the cubic lattice symmetry. Increasing the processing temperature strengthens the biaxial in-plane anisotropy in detriment of the uniaxial contribution, in agreement with a more homogeneous structure of expanded austenite with lower residual stresses. In contrast to polycrystalline expanded austenite, single crystalline expanded austenite exhibits its magnetic easy axes along basic directions.

14.
ACS Appl Mater Interfaces ; 5(10): 4320-7, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23581246

ABSTRACT

Oxygen implantation in ferromagnetic Co thin films is shown to be an advantageous route to improving the magnetic properties of Co-CoO systems by forming multiple nanoscaled ferromagnetic/antiferromagnetic interfaces homogeneously distributed throughout the layer. By properly designing the implantation conditions (energy and fluence) and the structure of the films (capping, buffer, and Co layer thickness), relatively uniform O profiles across the Co layer can be achieved using a single-energy ion implantation approach. This optimized configuration results in enhanced exchange bias loop shifts, improved loop homogeneity, increased blocking temperature, reduced relative training effects and increased retained remanence in the trained state with respect to both Co/CoO bilayers and O-implanted Co films with a Gaussian-like O depth profile. This underlines the great potential of ion implantation to tailor the magnetic properties by controllably modifying the local microstructure through tailored implantation profiles.

15.
J Phys Chem Lett ; 3(17): 2395-400, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-26292121

ABSTRACT

The structure of titanyl phthalocyanine (TiOPc) thin films is correlated with photovoltaic properties of planar heterojunction solar cells by pairing different TiOPc polymorph donor layers with C60 as an acceptor. Solvent annealing and the insertion of two different templating layers, namely 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and CuI, prove to be effective methods to control the TiOPc thin film structure. The crystal phase of TiOPc thin films was identified by combining X-ray reflectivity (XRR) measurements with spectroscopic techniques, including absorption and micro-Raman measurements. Implementation of a donor layer with an absorption spectrum extending into the near-infrared (NIR) led to solar cells with external quantum efficiencies (EQEs) above 27% from λ = 600 - 890 nm, with the best device yielding a power conversion efficiency (PCE) of 2.6%. Our results highlight the need to understand the relationship between processing parameters and thin film structure, as these have important consequences on device performance.

16.
Small ; 7(17): 2498-506, 2011 Sep 05.
Article in English | MEDLINE | ID: mdl-21744495

ABSTRACT

The fields of bioscience and nanomedicine demand precise thermometry for nanoparticle heat characterization down to the nanoscale regime. Since current methods often use indirect and less accurate techniques to determine the nanoparticle temperature, there is a pressing need for a direct and reliable element-specific method. In-situ extended X-ray absorption fine structure (EXAFS) spectroscopy is used to determine the thermo-optical properties of plasmonic branched gold nanoparticles upon resonant laser illumination. With EXAFS, the direct determination of the nanoparticle temperature increase upon laser illumination is possible via the thermal influence on the gold lattice parameters. More specifically, using the change of the Debye-Waller term representing the lattice disorder, the temperature increase is selectively measured within the plasmonic branched nanoparticles upon resonant laser illumination. In addition, the signal intensity shows that the nanoparticle concentration in the beam more than doubles during laser illumination, thereby demonstrating that photothermal heating is a dynamic process. A comparable temperature increase is measured in the nanoparticle suspension using a thermocouple. This good correspondence between the temperature at the level of the nanoparticle and at the level of the suspension points to an efficient heat transfer between the nanoparticle and the surrounding medium, thus confirming the potential of branched gold nanoparticles for hyperthermia applications. This work demonstrates that X-ray absorption spectroscopy-based nanothermometry could be a valuable tool in the fast-growing number of applications of plasmonic nanoparticles, particularly in life sciences and medicine.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Gold/radiation effects , Hot Temperature , Humans , Laser Therapy , Lasers , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Metal Nanoparticles/ultrastructure , Nanomedicine , Nanotechnology , Surface Plasmon Resonance , Thermometry/methods , X-Ray Absorption Spectroscopy/methods
18.
Plant Physiol ; 147(2): 518-27, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18417636

ABSTRACT

Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.


Subject(s)
Malus/chemistry , Pyrus/chemistry , Synchrotrons , Tomography, X-Ray Computed
19.
Phys Rev Lett ; 99(6): 067201, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17930863

ABSTRACT

The training effect and asymmetry in exchange-coupled polycrystalline CoO/Co bilayers with in-plane magnetization has been investigated. This system is selected for its large training effect and initial asymmetry of the magnetic hysteresis after field cooling, which is removed after training. Applying an in-plane magnetic field perpendicular to the cooling field largely restores the untrained state with its pronounced asymmetry. The possibility to reinduce the asymmetry strongly depends on the magnitude of the perpendicular field, providing the key to identify the physical origin of training and removal of the asymmetry. These effects result from misalignment between the ferromagnetic magnetization and the uncompensated magnetization of the granular antiferromagnet.

20.
Phys Rev Lett ; 95(15): 157202, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16241755

ABSTRACT

We performed a detailed study of the training effect in exchange biased CoO/Co bilayers. High-resolution measurements of the anisotropic magnetoresistance (AMR) display an asymmetry in the first magnetization reversal process and training in the subsequent reversal processes. Surprisingly, the AMR measurements as well as magnetization measurements reveal that it is possible to partially reinduce the untrained state by performing a hysteresis measurement with an in-plane external field perpendicular to the cooling field. Indeed, the next hysteresis loop obtained in a field parallel to the cooling field resembles the initial asymmetric hysteresis loop, but with a reduced amount of spin rotation occurring at the first coercive field. This implies that the antiferromagnetic domains, which are created during the first reversal after cooling, can be partially erased.

SELECTION OF CITATIONS
SEARCH DETAIL
...