Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Evolution ; 78(4): 679-689, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38241699

ABSTRACT

Divergent ecological character displacement (ECD) is the competition-driven divergence in resource use-related phenotypic traits between coexisting species. It is considered one of the primary drivers of ecological diversification and adaptive radiation. We analyzed phenotypic and ecological variation in 2 African annual killifish species of the genus Nothobranchius: N. eggersi and N. melanospilus in sympatry and N. melanospilus in allopatry. Our aim was to test whether allopatric and sympatric populations of N. melanospilus differ morphologically from each other and from N. eggersi and examine whether these differences are consistent with the predictions of ECD. We find that sympatric N. melanospilus differ from allopatric N. melanospilus and differ from N. eggersi more strongly than the latter. Our data satisfy four criteria for demonstrating ECD: Differences in phenotypes between allopatric and sympatric N. melanospilus are greater than expected by chance; the divergence pattern between allopatric and sympatric N. melanospilus results from an evolutionary shift rather than from ecological sorting; morphological differences observed reflect differences in resource use; and, lastly, sites of allopatry and sympatry do not differ in food resource availability or other ecological conditions. Our results suggest that competition is the main driver of the observed divergence between two N. melanospilus populations.


Subject(s)
Biological Evolution , Killifishes , Animals , Tanzania , Fundulus heteroclitus , Sympatry
2.
Evolution ; 77(8): 1791-1805, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37224479

ABSTRACT

The occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary analytical and evolutionary simulation models of within-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with fluctuating selection, life-history traits, and competitive asymmetries among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that lowering adult survival may, in contrast to classic bet-hedging theory, result in less spreading of germination by decreasing density-dependent competition. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


Subject(s)
Climate , Germination , Plants , Seeds , Seasons
3.
Proc Biol Sci ; 289(1971): 20212655, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35317672

ABSTRACT

Ontogenetic diet shifts, where individuals change their resource use during development, are the rule rather than the exception in the animal world. Here, we aim to understand how such changes in diet during development affect the conditions for an adaptive radiation in the presence of ecological opportunity. We use a size-structured consumer-resource model and the adaptive dynamics approach to study the ecological conditions for speciation. We assume that small individuals all feed on a shared resource. Large individuals, on the other hand, have access to multiple food sources on which they can specialize. We find that competition among small individuals can hinder an adaptive radiation to unfold, despite plenty of ecological opportunity for large individuals. When small individuals experience strong competition for food, they grow slowly and only a few individuals are recruited to the larger size classes. Hence, competition for food among large individuals is weak and there is therefore no disruptive selection. In addition, initial conditions determine if an adaptive radiation occurs or not. A consumer population initially dominated by small individuals will not radiate. On the other hand, a population initially dominated by large individuals may undergo adaptive radiation and diversify into multiple species.


Subject(s)
Diet , Ecosystem , Animals
4.
Am Nat ; 198(6): 678-693, 2021 12.
Article in English | MEDLINE | ID: mdl-34762569

ABSTRACT

AbstractIn haplodiploids, (1) alleles spend twice as many generations in females as in males, (2) males are never heterozygous and therefore express recessive alleles, and (3) males sire daughters but not sons. Intralocus sexual conflict therefore operates differently in haplodiploids than in diploids and shares strong similarities with loci on X (or Z) chromosomes. The common co-occurrence of all three features makes it difficult to pinpoint their respective roles. However, they do not always co-occur in nature, and missing cases can be additionally studied with hypothetical life cycles. We model sexually antagonistic alleles in eight different sex determination systems and find that arguments 1 and 2 promote invasion and fixation of female-beneficial and male-beneficial alleles, respectively; argument 2 also improves prospects for polymorphism. Argument 3 harms the invasion prospects of sexually antagonistic alleles (irrespective of which sex benefits) but promotes fixation should invasion nevertheless occur. Disentangling the features helps to evaluate the validity of previous verbal arguments and yields better-informed predictions about intralocus sexual conflict under different sex determination systems, including hitherto undiscovered ones.


Subject(s)
Sex Characteristics , Sex Chromosomes , Alleles , Diploidy , Female , Humans , Male , Selection, Genetic
5.
Evolution ; 74(8): 1826-1850, 2020 08.
Article in English | MEDLINE | ID: mdl-32524589

ABSTRACT

Although metamorphosis is widespread in the animal kingdom, several species have evolved life-cycle modifications to avoid complete metamorphosis. Some species, for example, many salamanders and newts, have deleted the adult stage via a process called paedomorphosis. Others, for example, some frog species and marine invertebrates, no longer have a distinct larval stage and reach maturation via direct development. Here we study which ecological conditions can lead to the loss of metamorphosis via the evolution of direct development. To do so, we use size-structured consumer-resource models in conjunction with the adaptive-dynamics approach. In case the larval habitat deteriorates, individuals will produce larger offspring and in concert accelerate metamorphosis. Although this leads to the evolutionary transition from metamorphosis to direct development when the adult habitat is highly favorable, the population will go extinct in case the adult habitat does not provide sufficient food to escape metamorphosis. With a phylogenetic approach we furthermore show that among amphibians the transition of metamorphosis to direct development is indeed, in line with model predictions, conditional on and preceded by the evolution of larger egg sizes.


Subject(s)
Amphibians/genetics , Biological Evolution , Ecosystem , Metamorphosis, Biological , Models, Biological , Selection, Genetic , Amphibians/growth & development , Animals , Body Size , Extinction, Biological , Ovum/cytology
6.
Ecol Lett ; 23(4): 620-630, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31994356

ABSTRACT

For organisms living in unpredictable environments, timing important life-history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among- and within-season uncertainty. We use a modelling approach that considers among-season dormancy and within-season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among-season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter-intuitively select for less risk-spreading within the season. Furthermore, strong priority effects select for earlier within-season germination phenology which in turn increases the need for bet hedging through among-season dormancy.


Subject(s)
Climate , Seeds , Germination , Phenotype , Plants , Seasons
7.
Am Nat ; 193(5): E116-E131, 2019 05.
Article in English | MEDLINE | ID: mdl-31002571

ABSTRACT

Almost all animal species undergo metamorphosis, even though empirical data show that this life-history strategy evolved only a few times. Why is metamorphosis so widespread, and why has it evolved? Here we study the evolution of metamorphosis by using a fully size-structured population model in conjunction with the adaptive-dynamics approach. We assume that individuals compete for two food sources; one of these, the primary food source, is available to individuals of all sizes. The secondary food source is available only to large individuals. Without metamorphosis, unresolvable tensions arise for species faced with the opportunity of specializing on such a secondary food source. We show that metamorphosis can evolve as a way to resolve these tensions, such that small individuals specialize on the primary food source while large individuals specialize on the secondary food source. We find, however, that metamorphosis evolves only when the supply rate of the secondary food source exceeds a high threshold. Individuals postpone metamorphosis when the ecological conditions under which metamorphosis originally evolved deteriorate but will often not abandon this life-history strategy, even if it causes population extinction through evolutionary trapping. In summary, our results show that metamorphosis is not easy to evolve but that, once evolved, it is hard to lose. These findings can explain the widespread occurrence of metamorphosis in the animal kingdom despite its few evolutionary origins.


Subject(s)
Biological Evolution , Body Size , Diet , Metamorphosis, Biological , Models, Biological , Animals
8.
J Theor Biol ; 457: 237-248, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30170045

ABSTRACT

In many size-structured populations individuals change resources during the course of their ontogenetic development. Different resources often require different adaptations to be effectively exploited. This leads to a trade-off between small and large individuals in direct developing species. Specialization on the resource used later in life turns out to be hardly possible in case of equilibrium dynamics. However, size-structured populations often exhibit population cycles. Non-equilibrium dynamics can change evolutionary behavior when compared with equilibrium dynamics. Here, we study the evolution of specialization on a secondary resource that is available only to large individuals, using the framework of adaptive dynamics. We show that in case of small-amplitude cycles, specialization on a secondary resource is hardly possible. Specialization will either decrease the resource intake of large individuals or severely increase competition among small individuals such that they cannot mature. Specialization on a secondary resource is often possible in case the population exhibits large-amplitude cycles. Specialization in that case increases the resource intake of large individuals and therefore prevents starvation. While specialization on a secondary resource increases competition among small individuals, maturation is still possible in case of large-amplitude cycles. We furthermore show that there is ecological bistability where small- and large-amplitude cycles coexist, giving rise to evolutionary bistability.


Subject(s)
Biological Evolution , Competitive Behavior , Ecosystem , Models, Biological , Animals , Population Dynamics
9.
Am Nat ; 190(1): 45-60, 2017 07.
Article in English | MEDLINE | ID: mdl-28617644

ABSTRACT

Many free-living animal species, including the majority of fish, insects, and amphibians, change their food and habitat during their life. Even though these ontogenetic changes in niche are common, it is not well understood which ecological conditions have favored the evolution of these shifts. Using an adaptive dynamics approach, we show that it is evolutionarily advantageous to switch to an alternative food source in the course of ontogeny when this results in a higher intake rate for the switching consumers. Individuals are, however, not able to specialize on this new food source when this negatively affects the performance early in life on the original food source. Selection on these early life stages is so strong that in species with a complete diet shift, evolution results in large juveniles and adults that are maladapted to the alternative food source while their offspring are specialized on the original food source when young. These outcomes suggest strong selection to decouple the different life stages, such that they can maximize their performance on different food sources independently from each other. Metamorphosis could be a way to decouple the different life stages and therefore evolve in species that feed on multiple food sources during their life.


Subject(s)
Biological Evolution , Ecology , Fishes , Animals , Diet , Ecosystem , Feeding Behavior , Parents
10.
J Anim Ecol ; 84(2): 414-26, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25314614

ABSTRACT

Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP.


Subject(s)
Cladocera/physiology , Competitive Behavior , Perches/physiology , Predatory Behavior/physiology , Animals , Body Size , Food Chain , Population Dynamics , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...