Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(19): 3852-3858, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37471457

ABSTRACT

PURPOSE: We hypothesized that optimizing the utility of stereotactic body radiotherapy (SBRT) based on the individual patient's probability for tumor control and risk of liver injury would decrease toxicity without sacrificing local control in patients with impaired liver function or tumors not amenable to thermal ablation. PATIENTS AND METHODS: Patients with Child-Pugh (CP) A to B7 liver function with aggregate tumor size >3.5 cm, or CP ≥ B8 with any size tumor were prospectively enrolled on an Institutional Review Board-approved phase II clinical trial to undergo SBRT with baseline and midtreatment dose optimization using a quantitative, individualized utility-based analysis. Primary endpoints were change in CP score of ≥2 points within 6 months and local control. Protocol-treated patients were compared with patients receiving conventional SBRT at another cancer center using overlap weighting. RESULTS: A total of 56 patients with 80 treated tumors were analyzed with a median follow-up of 11.2 months. Two-year cumulative incidence of local progression was 6.4% [95% confidence interval (CI, 2.4-13.4)]. Twenty-one percent of patients experienced treatment-related toxicity within 6 months, which is similar to the rate for SBRT in patients with CP A liver function. An analysis using overlap weighting revealed similar local control [HR, 0.69; 95% CI (0.25-1.91); P = 0.48] and decreased toxicity [OR, 0.26; 95% CI (0.07-0.99); P = 0.048] compared with conventional SBRT. CONCLUSIONS: Treatment of individuals with impaired liver function or tumors not amenable to thermal ablation with a treatment paradigm designed to optimize utility may decrease treatment-related toxicity while maintaining tumor control.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Radiosurgery , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Treatment Outcome , Radiotherapy Dosage , Radiosurgery/adverse effects , Retrospective Studies
2.
Transl Oncol ; 12(7): 889-894, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31078059

ABSTRACT

BACKGROUND: Declining liver function is a concerning side effect associated with radiation therapy. Biomarkers of liver toxicity would be useful in personalizing therapy. METHODS: As part of two prospective clinical trials examining adaptive radiation therapy, we collected serum samples from patients receiving liver radiation. We performed a screen of 22 cytokines using a multiplex assay then used ELISA to quantify the cytokines of greatest interest. Subjects were split into screening and validation cohorts. Toxicity was defined as an increase in Child-Pugh score of 2 points or greater within 6 months. Logistic regression models were used to estimate the relationship between our toxicity endpoint and serum cytokine concentrations. RESULTS: Our initial screen (46 subjects, 11 events) identified hepatocyte growth factor (HGF), CD40L (CD154), and eotaxin (CCL11) as potentially predictive of toxicity. We then tested these markers in an expanded patient cohort (104 subjects, 18 events) with a batch correction due to varying age of the samples which confirmed that high HGF and low CD40L were associated with a subsequent decline in liver function following radiation therapy. Multivariate analysis factoring in baseline Child-Pugh score and mean liver radiation dose demonstrated that HGF and CD40L were potentially predictive of toxicity (HGF OR 4.3, P = .009; CD40L OR 0.5 P = .06). Additionally, higher than median baseline HGF levels (1.4 ng/ml) were significantly associated with decreased survival following liver radiation (27.1 vs 14.5 months, P = .03). CONCLUSIONS: Our study identifies high HGF and low CD40L as potential markers of liver toxicity following radiation therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...