Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
ChemSusChem ; 15(11): e202200851, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35581132

ABSTRACT

Invited for this month's cover is the group of Bert Weckhuysen at Utrecht University. The image shows how iron nanoparticles in a biomass gasification residue can convert CO, CO2 , and H2 mixtures into light olefins. The Research Article itself is available at 10.1002/cssc.202200436.


Subject(s)
Alkenes , Carbon Dioxide , Biomass , Carbon Dioxide/chemistry , Catalysis , Humans , Minerals
3.
ChemSusChem ; 15(11): e202200436, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35294803

ABSTRACT

Gasification is a process to transform solids, such as agricultural and municipal waste, into gaseous feedstock for making transportation fuels. The so-called coarse solid residue (CSR) that remains after this conversion process is currently discarded as a process solid residue. In the context of transitioning from a linear to a circular society, the feasibility of using the solid process residue from waste gasification as a solid catalyst for light olefin production from CO, CO2 , and H2 mixtures was investigated. This CSR-derived catalyst converted biomass-derived syngas, a H2 -poor mixture of CO, CO2 , H2 , and N2 , into methane (57 %) and C2 -C4 olefins (43 %) at 450 °C and 20 bar. The main active ingredient of CSR was Fe, and it was discovered with operando X-ray diffraction that metallic Fe, present after pre-reduction in H2 , transformed into an Fe carbide phase under reaction conditions. The increased formation of Fe carbides correlated with an increase in CO conversion and olefin selectivity. The presence of alkali elements, such as Na and K, in CSR-derived catalyst increased olefin production as well.


Subject(s)
Alkenes , Carbon Dioxide , Biomass , Carbon Dioxide/chemistry , Catalysis , Minerals
4.
JACS Au ; 1(11): 1996-2008, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-35574041

ABSTRACT

Kinetics-based differences in the early stage fragmentation of two structurally analogous silica-supported hafnocene- and zirconocene-based catalysts were observed during gas-phase ethylene polymerization at low pressures. A combination of focused ion beam-scanning electron microscopy (FIB-SEM) and nanoscale infrared photoinduced force microscopy (IR PiFM) revealed notable differences in the distribution of the support, polymer, and composite phases between the two catalyst materials. By means of time-resolved probe molecule infrared spectroscopy, correlations between this divergence in morphology and the kinetic behavior of the catalysts' active sites were established. The rate of polymer formation, a property that is inherently related to a catalyst's kinetics and the applied reaction conditions, ultimately governs mass transfer and thus the degree of homogeneity achieved during support fragmentation. In the absence of strong mass transfer limitations, a layer-by-layer mechanism dominates at the level of the individual catalyst support domains under the given experimental conditions.

5.
Chemistry ; 27(5): 1688-1699, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-32729972

ABSTRACT

The Cr/SiO2 Phillips catalyst has taken a central role in ethylene polymerization since its invention in 1953. The uniqueness of this catalyst is related to its ability to produce broad molecular weight distribution (MWD) PE materials as well as that no co-catalysts are required to attain activity. Nonetheless, co-catalysts in the form of metal-alkyls can be added for scavenging poisons, enhancing catalyst activity, reducing the induction period, and tailoring polymer characteristics. The activation mechanism and related polymerization mechanism remain elusive, despite extensive industrial and academic research. Here, we show that by varying the type and amount of metal-alkyl co-catalyst, we can tailor polymer properties around a single Cr/SiO2 Phillips catalyst formulation. Furthermore, we show that these different polymer properties exist in the early stages of polymerization. We have used conventional polymer characterization techniques, such as size exclusion chromatography (SEC) and 13 C NMR, for studying the metal-alkyl co-catalyst effect on short-chain branching (SCB), long-chain branching (LCB) and molecular weight distribution (MWD) at the bulk scale. In addition, scanning transmission X-ray microscopy (STXM) was used as a synchrotron technique to study the PE formation in the early stages: allowing us to investigate the produced type of early-stage PE within one particle cross-section with high energy resolution and nanometer scale spatial resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...