Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(39): e2123156119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122212

ABSTRACT

Straightforward manufacturing pathways toward large-scale, uniformly layered composites may enable the next generation of materials with advanced optical, thermal, and mechanical properties. Reaction-diffusion systems are attractive candidates to this aim, but while layered composites theoretically could spontaneously arise from reaction-diffusion, in practice randomly oriented patches separated by defects form, yielding nonuniformly patterned materials. A propagating reaction front can prevent such nonuniform patterning, as is the case for Liesegang processes, in which diffusion drives a reaction front to produce layered precipitation patterns. However, while diffusion is crucial to control patterning, it slows down transport of reactants to the front and results in a steady increase of the band spacing as the front advances. Here, we circumvent these diffusive limitations by embedding the Liesegang process in mechanically responsive hydrogels. The coupling between a moving reaction front and hydrogel contraction induces the formation of a self-regulated transport channel that ballistically carries reactants toward the area where patterning occurs. This ensures rapid and uniform patterning. Specifically, large-scale ([Formula: see text]5-cm) uniform banding patterns are produced with tunable band distance (d = 60 to 160 µm) of silver dichromate crystals inside responsive gelatin-alginate hydrogels. The generality and applicability of our mechanoreaction-diffusion strategy are demonstrated by forming patterns of precipitates in significantly smaller microscopic banding patterns (d = 10 to 30 µm) that act as self-organized diffraction gratings. By circumventing the inherent limitations of diffusion, our strategy unlocks the potential of reaction-diffusion processes for the manufacturing of uniformly layered materials.


Subject(s)
Hydrogels , Manufactured Materials , Alginates/chemistry , Chromates/chemistry , Diffusion , Gelatin/chemistry , Hydrogels/chemistry , Silver/chemistry
2.
Biomater Sci ; 8(11): 3044-3051, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32307470

ABSTRACT

Biohydrogels, composed of naturally occurring biopolymers are typically preferred over their synthetic analogues in bioapplications thanks to their biocompatibility, bioactivity, mechanical or degradation properties. Shaping biohydrogels on the single-cell length scales (micrometers) is a key ability needed to create bioequivalent artificial cell/tissue constructs and cannot be achieved with current methods. This work introduces a method for photolithographic synthesis of arbitrarily shaped microgels composed purely of a biopolymer of choice. The biopolymer is mixed with a sacrificial photocrosslinkable polymer, and the mixture is photocrosslinked in a lithographic process, yielding anisotropic microgels with the biopolymer entrapped in the network. Subsequent ionic or covalent biopolymer crosslinking followed by template cleavage yields a microgel composed purely of a biopolymer with the 3D shape dictated by the photocrosslinking process. Method feasibility is demonstrated with two model polysaccharide biopolymers (alginate, chitosan) using suitable crosslinking methods. Next, alginate microgels were used as microtaggants on a pharmaceutical oral solid dose formulation to prevent its counterfeiting. Since the alginate is approved as an additive in the food and pharmaceutical industries, the presented tagging system can be implemented in practical use much easier than systems comprising synthetic polymers.


Subject(s)
Alginates/chemistry , Biopolymers/chemistry , Hydrogels/chemistry , Microgels/chemistry , Dextrans/chemistry , Fluorescence , Iridoids/chemistry , Methacrylates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...