Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067919

ABSTRACT

Optical sensors excel in performance but face efficacy challenges when submerged due to potential surface colonization, leading to signal deviation. This necessitates robust solutions for sustained accuracy. Protein and microorganism adsorption on solid surfaces is crucial in antibiofilm studies, contributing to conditioning film and biofilm formation. Most studies focus on surface characteristics (hydrophilicity, roughness, charge, and composition) individually for their adhesion impact. In this work, we tested four materials: silica, titanium dioxide, aluminum oxide, and parylene C. Bovine Serum Albumin (BSA) served as the biofouling conditioning model, assessed with X-ray photoelectron spectroscopy (XPS). Its effect on microorganism adhesion (modeled with functionalized microbeads) was quantified using a shear stress flow chamber. Surface features and adhesion properties were correlated via Principal Component Analysis (PCA). Protein adsorption is influenced by nanoscale roughness, hydrophilicity, and likely correlated with superficial electron distribution and bond nature. Conditioning films alter the surface interaction with microbeads, affecting hydrophilicity and local charge distribution. Silica shows a significant increase in microbead adhesion, while parylene C exhibits a moderate increase, and titanium dioxide shows reduced adhesion. Alumina demonstrates notable stability, with the conditioning film minimally impacting adhesion, which remains low.


Subject(s)
Aluminum Oxide , Silicon Dioxide , Aluminum Oxide/chemistry , Silicon Dioxide/chemistry , Surface Properties , Serum Albumin, Bovine/chemistry , Titanium/chemistry , Adsorption
2.
RSC Adv ; 13(33): 23076-23086, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37529364

ABSTRACT

Sulfate-modified Ag2CO3 was successfully synthesized via a simple precipitation method. Its visible light photocatalytic performance against the removal of Orange G was found to be significantly enhanced in comparison with the one of pure Ag2CO3. While SO42--Ag2CO3 ensured a removal efficiency of 100% of OG within 30 min, the unmodified Ag2CO3 exhibited a degradation threshold at hardly 60%. Likewise, the degradation rate constant in the presence of SO42--Ag2CO3 photocatalyst was assessed to be twice that determined upon the involvement of pristine Ag2CO3. Furthermore, Total Organic Carbon (TOC) measurements evidenced the occurrence of a quasi-total mineralization of the dye pollutant upon the use of SO42--Ag2CO3 photocatalyst. Scavenger experiments highlighted the dominant role of photo-induced h+ along with ˙O3- ozonide radicals in the OG photocatalytic oxidation mechanism. Reuse cycles revealed that the modification by SO42- is a promising route to improve the stability of silver carbonate against photocorrosion. All these improvements could be ascribed to electronic transfer from the upper SO42- HOMO to the lower Ag2CO3 conduction band.

3.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494168

ABSTRACT

The attachment of bacteria and other microbes to natural and artificial surfaces leads to the development of biofilms, which can further cause nosocomial infections. Thus, an important field of research is the development of new materials capable of preventing the initial adhesion of pathogenic microorganisms. In this work, novel polymer/particle composite materials, based on a polythiourethane (PTU) matrix and either spherical (s-ZnO) or tetrapodal (t-ZnO) shaped ZnO fillers, were developed and characterized with respect to their mechanical, chemical and surface properties. To then evaluate their potential as anti-fouling surfaces, the adhesion of two different pathogenic microorganism species, Staphylococcus aureus and Candida glabrata, was studied using atomic force microscopy (AFM). Our results show that the adhesion of both S. aureus and C. glabrata to PTU and PTU/ZnO is decreased compared to a model surface polydimethylsiloxane (PDMS). It was furthermore found that the amount of both s-ZnO and t-ZnO filler had a direct influence on the adhesion of S. aureus, as increasing amounts of ZnO particles resulted in reduced adhesion of the cells. For both microorganisms, material composites with 5 wt.% of t-ZnO particles showed the greatest potential for anti-fouling with significantly decreased adhesion of cells. Altogether, both pathogens exhibit a reduced capacity to adhere to the newly developed nanomaterials used in this study, thus showing their potential for bio-medical applications.

4.
J Nanosci Nanotechnol ; 11(9): 8387-91, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22097590

ABSTRACT

Amorphous aluminium oxide coatings were processed by metalorganic chemical vapour deposition (MOCVD); their structural characteristics were determined as a function of the processing conditions, the process was modelled considering appropriate chemical kinetic schemes, and the properties of the obtained material were investigated and were correlated with the nanostructure of the coatings. With increasing processing temperature in the range 350 degrees C-700 degrees C, subatmospheric MOCVD of alumina from aluminium tri-isopropoxide (ATI) sequentially yields partially hydroxylated amorphous aluminium oxides, amorphous Al2O3 (415 degrees C-650 degrees C) and nanostructured gamma-Al2O3 films. A numerical model for the process allowed reproducing the non uniformity of deposition rate along the substrate zone due to the depletion of ATI. The hardness of the coatings prepared at 350 degrees C, 480 degrees C and 700 degrees C is 6 GPa, 11 GPa and 1 GPa, respectively. Scratch tests on films grown on TA6V titanium alloy reveal adhesive and cohesive failures for the amorphous and nanocrystalline ones, respectively. Alumina coating processed at 480 degrees C on TA6V yielded zero weight gain after oxidation at 600 degrees C in lab air. The surface of such low temperature processed amorphous films is hydrophobic (water contact angle 106 degrees), while the high temperature processed nanocrystalline films are hydrophilic (48 degrees at a deposition temperature of 700 degrees C). It is concluded that amorphous Al2O3 coatings can be used as oxidation and corrosion barriers at ambient or moderate temperature. Nanostructured with Pt or Ag nanoparticles, they can also provide anti-fouling or catalytic surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...