Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 196: 106517, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38679111

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.


Subject(s)
Aging , Amyotrophic Lateral Sclerosis , Brain , Drosophila Proteins , Inclusion Bodies , Animals , Aging/metabolism , Aging/pathology , Aging/physiology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Animals, Genetically Modified , Autophagy/physiology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Drosophila , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Neurons/metabolism , Neurons/pathology , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
2.
Hum Mol Genet ; 31(17): 2857-2875, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35377453

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset, progressive motor neurodegenerative disorder. A key pathological feature of the disease is the presence of heavily ubiquitinated protein inclusions. Both the unfolded protein response and the ubiquitin-proteasome system appear significantly impaired in patients and animal models of ALS. We have studied cellular and molecular mechanisms involved in ALS using a vesicle-associated membrane protein-associated protein B (VAPB/ALS8) Drosophila model [Moustaqim-Barrette, A., Lin, Y.Q., Pradhan, S., Neely, G.G., Bellen, H.J. and Tsuda, H. (2014) The ALS 8 protein, VAP, is required for ER protein quality control. Hum. Mol. Genet., 23, 1975-1989], which mimics many systemic aspects of the human disease. Here, we show that VAPB, located on the cytoplasmic face of the endoplasmic reticulum membrane, interacts with Caspar, an orthologue of human fas associated factor 1 (FAF1). Caspar, in turn, interacts with transitional endoplasmic reticulum ATPase (TER94), a fly orthologue of ALS14 (VCP/p97, valosin-containing protein). Caspar overexpression in the glia extends lifespan and also slows the progression of motor dysfunction in the ALS8 disease model, a phenomenon that we ascribe to its ability to restrain age-dependent inflammation, which is modulated by Relish/NFκB signalling. Caspar binds to VAPB via an FFAT motif, and we find that Caspar's ability to negatively regulate NFκB signalling is not dependent on the VAPB:Caspar interaction. We hypothesize that Caspar is a key molecule in the pathogenesis of ALS. The VAPB:Caspar:TER94 complex appears to be a candidate for regulating both protein homeostasis and NFκB signalling, with our study highlighting a role for Caspar in glial inflammation. We project human FAF1 as an important protein target to alleviate the progression of motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Adaptor Proteins, Signal Transducing/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Mutation , Nerve Degeneration/pathology , Neuroglia/metabolism , Ubiquitin/metabolism , Vesicular Transport Proteins/metabolism
3.
Front Cell Dev Biol ; 7: 145, 2019.
Article in English | MEDLINE | ID: mdl-31428611

ABSTRACT

Monensin Sensitive 1 (Mon1) is a component of the Mon1:Ccz1 complex that mediates Rab5 to Rab7 conversion in eukaryotic cells by serving as a guanine nucleotide exchange factor for Rab7 during vesicular trafficking. We find that Mon1 activity modulates the complexity of Class IV dendritic arborization (da) neurons during larval development. Loss of Mon1 function leads to an increase in arborization and complexity, while increased expression, leads to reduced arborization. The ability of Mon1 to influence dendritic development is possibly a function of its interactions with Rab family GTPases that are central players in vesicular trafficking. Earlier, these GTPases, specifically Rab1, Rab5, Rab10, and Rab11 have been shown to regulate dendritic arborization. We have conducted genetic epistasis experiments, by modulating the activity of Rab5, Rab7, and Rab11 in da neurons, in Mon1 mutants, and demonstrate that the ability of Mon1 to regulate arborization is possibly due to its effect on the recycling pathway. Dendritic branching is critical for proper connectivity and physiological function of the neuron. An understanding of regulatory elements, such as Mon1, as demonstrated in our study, is essential to understand neuronal function.

4.
Development ; 146(13)2019 07 10.
Article in English | MEDLINE | ID: mdl-31292144

ABSTRACT

Monensin-sensitive 1 (Mon1) is an endocytic regulator that participates in the conversion of Rab5-positive early endosomes to Rab7-positive late endosomes. In Drosophila, loss of mon1 leads to sterility as the mon1 mutant females have extremely small ovaries with complete absence of late stage egg chambers - a phenotype reminiscent of mutations in the insulin pathway genes. Here, we show that expression of many Drosophila insulin-like peptides (ILPs) is reduced in mon1 mutants and feeding mon1 adults an insulin-rich diet can rescue the ovarian defects. Surprisingly, however, mon1 functions in the tyramine/octopaminergic neurons (OPNs) and not in the ovaries or the insulin-producing cells (IPCs). Consistently, knockdown of mon1 in only the OPNs is sufficient to mimic the ovarian phenotype, while expression of the gene in the OPNs alone can 'rescue' the mutant defect. Last, we have identified ilp3 and ilp5 as critical targets of mon1. This study thus identifies mon1 as a novel molecular player in the brain-gonad axis and underscores the significance of inter-organ systemic communication during development.


Subject(s)
Brain/metabolism , Cell Differentiation/genetics , Drosophila Proteins/physiology , Germ Cells/physiology , Gonads/metabolism , Ovary/growth & development , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Gene Expression Regulation, Developmental , Infertility, Female/genetics , Infertility, Female/pathology , Insulin/physiology , Insulins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Oocytes/physiology , Oogenesis/genetics , Organ Size/genetics , Ovary/abnormalities , Ovary/metabolism , Ovary/pathology , Ovum/physiology , Paracrine Communication/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...