Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(10): 11930-11939, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33660970

ABSTRACT

Lithium transition-metal oxides (LiMn2O4 and LiMO2 where M = Ni, Mn, Co, etc.) are widely applied as cathode materials in lithium-ion batteries due to their considerable capacity and energy density. However, multiple processes occurring at the cathode/electrolyte interface lead to overall performance degradation. One key failure mechanism is the dissolution of transition metals from the cathode. This work presents results combining scanning electrochemical microscopy with inductively coupled plasma (ICP) and electron paramagnetic resonance (EPR) spectroscopies to examine cathode degradation products. Our effort employs a LiMn2O4 (LMO) thin film as a model cathode to monitor the Mn dissolution process without the potential complications of conductive additive and polymer binders. We characterize the electrochemical behavior of LMO degradation products in various electrolytes, paired with ICP and EPR, to better understand the properties of Mn complexes formed following metal dissolution. We find that the identity of the lithium salt anions in our electrolyte systems [ClO4-, PF6-, and (CF3SO2)2N-] appears to affect the Mn dissolution process significantly as well as the electrochemical behavior of the generated Mn complexes. This implies that the mechanism for Mn dissolution is at least partially dependent on the lithium salt anion.

2.
ACS Appl Mater Interfaces ; 12(9): 10496-10502, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32043855

ABSTRACT

LiNi0.5Co0.2Mn0.3O2 (NCM523), as a cathode material for rechargeable lithium-ion batteries, has attracted considerable attention and been successfully commercialized for decades. NCM is also a promising electrocatalyst for the oxygen evolution reaction (OER), and the catalytic activity is highly correlated to its structure. In this paper, we successfully obtain NCM523 with three different structures: spinel NCM synthesized at low temperature (LT-NCM), disordered NCM (DO-NCM) with lithium deficiency obtained at high temperature, and layered hexagonal NCM at high temperature (HT-NCM). By introducing lithium deficiency to tune the valence state of transition metals in NCM from Ni2+ to Ni3+, DO-NCM exhibits the best catalytic activity with the lowest onset potential (∼1.48 V) and Tafel slope (∼85.6 mV dec-1), whereas HT-NCM exhibits the worst catalytic activity with the highest onset potential (∼1.63 V) and Tafel slope (∼241.8 mV dec-1).

3.
Nat Commun ; 8(1): 1722, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170470

ABSTRACT

Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

4.
Nanotechnology ; 23(25): 255601, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22653083

ABSTRACT

A low-temperature ozone exposure technique was employed for the post-treatment of WO(x) nanorod thin films fabricated from hot-wire chemical vapor deposition (HWCVD) and ultrasonic spray deposition (USD) techniques. The resulting films were characterized with x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-vis-NIR spectroscopy and x-ray photoelectron spectroscopy (XPS). The stoichiometry and surface crystallinity of the WO(x) thin films were subsequently modulated upon ozone exposure and thermal annealing without particle growth. The electrochromic performance was studied in a LiClO(4)-propylene carbonate electrolyte, and the results suggest that the low-temperature ozone exposure technique is superior to the traditional high-temperature thermal annealing (employed to more fully oxidize the WO(x)). The optical modulation at 670 nm was improved from 35% for the as-deposited film to 57% for the film after ozone exposure at 150 °C. The coloration efficiency was improved and the switching speed to the darkened state was significantly accelerated from 18.0 s for the as-deposited film to 11.8 s for the film after the ozone exposure. The process opens an avenue for low-temperature and cost-effective manufacturing of electrochromic films, especially on flexible polymer substrates.

5.
J Am Chem Soc ; 133(12): 4299-306, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21384925

ABSTRACT

We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.


Subject(s)
Hydrogen/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Nanotubes, Carbon/chemistry , Biocatalysis , Clostridium acetobutylicum/enzymology , Electrochemistry , Electrodes , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Models, Molecular , Oxidation-Reduction , Particle Size , Surface Properties
6.
ACS Nano ; 4(2): 615-24, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20112934

ABSTRACT

Disordered nanohole arrays were formed in silver films by colloidal lithography techniques and characterized for their surface-plasmon activity. Careful control of the reagent concentration, deposition solution ionic strength, and assembly time allowed generation of a wide variety of nanohole densities. The fractional coverage of the nanospheres across the surface was varied from 0.05-0.36. Electrical sheet resistance measurements as a function of nanohole coverage fit well to percolation theory indicating that the electrical behavior of the films is determined by bulk silver characteristics. The transmission and reflection spectra were measured as a function of coverage and the results indicate that the optical behavior of the films is dominated by surface plasmon phenomena. Angle-resolved transmission and reflection spectra were measured, yielding insight into the nature of the excitations taking place on the metal films. The tunability of the colloidal lithography assembly method holds much promise as a means to generate customized transparent electrodes with high surface plasmon activity throughout the visible and NIR spectrum over large surface areas.


Subject(s)
Nanostructures/chemistry , Optical Phenomena , Silver/chemistry , Colloids , Electricity , Nanospheres/chemistry , Salts/chemistry , Spectrophotometry, Infrared , Time Factors
7.
ACS Nano ; 2(6): 1266-74, 2008 Jun.
Article in English | MEDLINE | ID: mdl-19206344

ABSTRACT

We present a comprehensive study of the optical and electrical properties of transparent conductive films made from precisely tuned ratios of metallic and semiconducting single-wall carbon nanotubes. The conductivity and transparency of the SWNT films are controlled by an interplay between localized and delocalized carriers, as determined by the SWNT electronic structure, tube-tube junctions, and intentional and unintentional redox dopants. The results suggest that the main resistance in the SWNT thin films is the resistance associated with tube-tube junctions. Redox dopants are found to increase the delocalized carrier density and transmission probability through intertube junctions more effectively for semiconductor-enriched films than for metal-enriched films. As a result, redox-doped semiconductor-enriched films are more conductive than either intrinsic or redox-doped metal-enriched films.


Subject(s)
Crystallization/methods , Metals/chemistry , Models, Chemical , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Semiconductors , Computer Simulation , Electric Conductivity , Macromolecular Substances/chemistry , Materials Testing , Models, Molecular , Molecular Conformation , Particle Size , Refractometry , Surface Properties
8.
Langmuir ; 20(25): 11134-40, 2004 Dec 07.
Article in English | MEDLINE | ID: mdl-15568868

ABSTRACT

Single- and double-stranded deoxy ribonucleic acid (DNA) molecules attached to self-assembled monolayers (SAMs) on gold surfaces were characterized by a number of optical and electronic spectroscopic techniques. The DNA-modified gold surfaces were prepared through the self-assembly of 6-mercapto-1-hexanol and 5'-C(6)H(12)SH -modified single-stranded DNA (ssDNA). Upon hybridization of the surface-bound probe ssDNA with its complimentary target, formation of double-stranded DNA (dsDNA) on the gold surface is observed and in a competing process, probe ssDNA is desorbed from the gold surface. The competition between hybridization of ssDNA with its complimentary target and ssDNA probe desorption from the gold surface has been investigated in this paper using X-ray photoelectron spectroscopy, chronocoulometry, fluorescence, and polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The formation of dsDNA on the surface was identified by PM-IRRAS by a dsDNA IR signature at approximately 1678 cm(-)(1) that was confirmed by density functional theory calculations of the nucleotides and the nucleotides' base pairs. The presence of dsDNA through the specific DNA hybridization was additionally confirmed by atomic force microscopy through colloidal gold nanoparticle labeling of the target ssDNA. Using these methods, strand loss was observed even for DNA hybridization performed at 25 degrees C for the DNA monolayers studied here consisting of attachment to the gold surfaces by single Au-S bonds. This finding has significant consequence for the application of SAM technology in the detection of oligonucleotide hybridization on gold surfaces.


Subject(s)
DNA/chemistry , Gold/chemistry , Surface Properties , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...