Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967097

ABSTRACT

Cr4+-activated phosphors are important candidate materials for NIR-II light sources, but providing a suitable lattice coordination environment for Cr4+ and achieving long wavelength broadband emission remains a challenge. In this work, a series of Cr4+-activated ABO2 (A = Li, Na; B = Al, Ga) phosphors were successfully prepared. Due to the presence of only tetrahedral coordination structures available for Cr4+ to occupy in the matrix crystal ABO2, the valence state and luminescence stability of Cr4+ are effectively guaranteed. Through the cation substitution design of A-site (Na → Li) and B-site (Ga → Al), the [BO4] tetrahedron is distorted and expanded, which degrades the symmetry of the Cr4+ coordination crystal field. Consequently, the central wavelength of the Cr4+ emission peak is tuned from 1280 to 1430 nm, and the fwhm is significantly extended from 257 to 355 nm. Thebroadband NIR-II light sources constructed with LiAlO2: 0.03Cr4+ and NaGaO2: 0.03Cr4+ phosphors verify their important potential applications in nondestructive testing and biological imaging.

2.
Org Lett ; 26(22): 4779-4783, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38807481

ABSTRACT

A new strategy to obtain ß,γ-unsaturated ketones via the cross-coupling of 1,3-butadiene, alkyl bromides, and arylboronic acids under 1 bar of CO with nickel as the catalyst has been developed. This newly developed four-component carbonylation procedure features advantages including using a cheap catalytic system, high step economy, mild reaction conditions, and excellent 1,4-regioselectivity, thereby providing a sustainable and alternative tool for ß,γ-unsaturated ketones production compared to the present tactics. To elucidate the application potential of this method, olefin synthons are derived from the representative coupling product.

3.
Inorg Chem ; 63(16): 7422-7429, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38598689

ABSTRACT

Eco-friendly halide double perovskites are attracting significant attention as potential substitutes for traditional lead-based halide perovskites. However, their typically wide or indirect band gap limits further technological advancement. This study presents a new, eco-friendly, all-inorganic millimeter-scale CsCuAgI3 single crystal (SC). The crystal exhibits a direct band gap of 2.02 eV at the G-point, markedly superior to that of traditional double perovskites. The absorption and photoluminescence spectra further corroborate its band gap attributes. Owing to the B-site Cu-Ag disorder, the crystal possesses a higher Urbach energy (119 meV), indicative of structural disorder. CsCuAgI3 exhibits a wide Stokes shift of 230 nm, a wide full width at half-maximum (fwhm) of 152 nm, a long fluorescence lifetime of 7.29 µs, and excellent stability. In addition, a photoelectric detection prototype was prepared using a CsCuAgI3 single crystal. Using a 375 nm laser as the excitation source, the device showed a very sensitive photoelectric response, clocking in at (0.37/0.21) seconds. This work offers new insights into developing novel lead-free double perovskite single crystals and exploring their potential applications.

4.
Chem Sci ; 15(4): 1418-1423, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38274060

ABSTRACT

Difunctionalization of alkenes is an efficient strategy for the synthesis of complex compounds from readily available starting materials. Herein, we developed a copper-catalyzed visible-light-mediated trichloromethylative carbonylation of ethylene by employing commercially available CCl4 and CO as trichloromethyl and carbonyl sources, respectively. With this protocol, various nucleophiles including amines, phenols, and alcohols can be rapidly transformed into ß-trichloromethyl carboxylic acid derivatives with good functional-group tolerance. Bis-vinylated γ-trichloromethyl amides can also be obtained by adjusting the pressure of carbon monoxide and ethylene. In addition, this photocatalytic system can be successfully applied in the late-stage functionalization of bioactive molecules and pharmaceutical derivatives as well.

5.
Angew Chem Int Ed Engl ; 63(8): e202318257, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38116921

ABSTRACT

Multicomponent reactions, particularly those entailing four or more reagents, have presented a longstanding challenge due to the inherent complexities associated with balancing reactivity, selectivity, and compatibility. In this study, we describe a palladium-catalyzed multi-component fluoroalkylative carbonylation of 1,3-enynes. A series of products featuring three active functional groups-allene, fluoroalkyl, and carboxyl, were efficiently and selectively integrated in a single chemical operation. Furthermore, more intricate fluoroalkyl-substituted pyrimidinones can be constructed by simply altering the 1,3-bisnucleophilic reagent. This approach also provides a valuable strategy for the late-stage modification of naturally occurring molecules and concise construction of diverse cyclic compounds.

6.
Inorg Chem ; 62(48): 19507-19515, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37975536

ABSTRACT

As a key material for phosphor-converted light-emitting diodes (pc-LEDs) applications, broadband near-infrared (NIR) phosphors currently face poor thermal stability issues. In this work, we synthesized a broadband near-infrared phosphor YGa3(BO3)4: Cr3+ (YGBO: Cr3+) with a high thermal stability. The YGBO: Cr3+ sample exhibits a broadband near-infrared emission centered at 770 nm with a full width at half-maximum (fwhm) of 2130 cm-1 under blue light excitation. Benefiting from the borate host crystal's strong structural rigidity, wide optical band gap, and weak electron-phonon coupling strength, YGBO: Cr3+ demonstrates strong luminescence thermal stability, and the corresponding luminescence intensity can maintain 80% at 150 °C compared to room temperature. Furthermore, we fabricated a pc-LED device using a blue light chip and YGBO: Cr3+ phosphor, and confirmed its application potential as a near-infrared light source in the spectral analysis of fruit freshness.

7.
Chem Asian J ; 18(21): e202300766, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37730903

ABSTRACT

In this work, we developed a photo-induced carbonylation of aryl bromides under transition metal-free conditions. The reaction shows good activity with alcohol and amine nucleophiles. Various esters and amides were formed from aryl halides and alcohols and amines under mild conditions in moderate to good yields.

8.
Dalton Trans ; 52(29): 10155-10164, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37432053

ABSTRACT

At present, most fluorescent materials that can be used for optical temperature measurement exhibit poor thermochromic performance, which limits their applications. In this study, the phosphor Ba3In(PO4)3:Er/Yb was synthesized with a high doping concentration of Yb3+, and it emitted composition- and temperature-induced wide color gamut up-conversion luminescence from red to green. Four modes of fluorescence thermometry can be realized in the temperature range of 303-603 K, which is based on the ratio of fluorescence intensity between thermally coupled energy levels and non-thermally coupled energy levels, color coordinate shift, and fluorescence decay lifetime, respectively. The highest Sr value obtained was 0.977% K-1. Taking advantage of the fact that temperature can significantly change the luminous color of the phosphor Ba3In(PO4)3:0.02Er3+/0.05Yb3+, we demonstrated 'temperature mapping' on a smooth metal surface with multiple optical encryptions. These results indicate that the Ba3In(PO4)3:Er/Yb phosphor is an excellent fluorescent material for thermal imaging and has great application potential in temperature visualization measurement and optical encryption.

9.
Org Lett ; 25(4): 682-687, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36656103

ABSTRACT

In this communication, a palladium-catalyzed regio- and stereoselective carbonylation of 2-trifluoromethyl-1,3-enynes to afford multisubstituted conjugated dienes has been realized. This protocol features excellent regio- and exclusive (E)-stereoselectivity and a broad substrate scope with both amines and alcohols as the suitable reaction partners and has shown promising functional group tolerance.

10.
Opt Express ; 30(7): 11861-11871, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473121

ABSTRACT

We demonstrate the first sub-40 fs soliton pulse generation from a diode-pumped Yb:Sr3Y2(BO3)4 laser passively mode-locked by a semiconductor saturable absorber mirror. Pulses as short as 38 fs at a central wavelength of 1051.7 nm were achieved with an average output power of 115 mW and a pulse repetition rate of 67.7 MHz. The maximum average output power reached 303 mW at 1057.8 nm with a slightly longer pulse duration of 52 fs, which corresponded to a peak power of 76.9 kW and an optical efficiency of 25.3%.

11.
Small ; 16(14): e1907020, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32162790

ABSTRACT

2D materials with inherent attributes of structural anisotropy have been well applied in the field of polarization-sensitive photodetection. However, to explore new 2D members with strong polarized-light responses still remains a challenge. Herein, by alloying diamine molecule into the 3D prototype of CsPbBr3 , a new Dion-Jacobson (DJ) type 2D perovskite of (HDA)CsPb2 Br7 (1, where HDA2+ is 1,6-hexamethylenediammonium), containing both inorganic Cs metal and organic cations is designed. The natural anisotropy characteristics of 1 are solidly elucidated by analyzing crystal structure, electric conductivity, and optical properties. Strikingly, distinct polarization-sensitive responses are observed in 1, owing to its strong anisotropy of optical absorption (the ratio of αc /αb ≈ 2.2). Consequently, crystal-based detectors of 1 exhibit fascinating photo-activities to polarized-light, including high detectivity (1.5 × 109 Jones), large dichroism ratio (Iph c /Iph b ≈ 1.6) and fast responding rate (200 µs). All these polarization-sensitive performances along with intriguing phase stability make 1 a potential candidate for polarized-light detection. This work paves a pathway toward new functionalities of DJ-type 2D hybrid perovskites for their future optoelectronic device applications.

12.
J Phys Condens Matter ; 32(23): 235801, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32031995

ABSTRACT

Here we report the single crystal growth, magnetic and transport properties of Cr-doped Sb4Te3, (Sb1-x Cr x )4Te3, with doping concentrations x = 0.25%, 0.5%, 0.75%, and 1%. The samples with lower doping concentrations are paramagnetic, while ferromagnetism appears in higher doped samples with the highest Curie temperature of 7 K when x = 1%. Anomalous Hall effect with clear hysteresis loop is observed in the samples with x = 1%, indicating the intrinsic ferromagnetism in the system. Hall resistivity measurements show the dominant charge carriers are holes and the density of holes increases with the doping concentration. This work provides a possible single-crystalline platform for further experimental researches on the nontrivial band topology in Sb4Te3, and enriches the ferromagnetic members in the transition metal doped (Sb2) m -Sb2Te3 topological material series.

13.
J Mol Model ; 26(2): 31, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31965325

ABSTRACT

Coarse-grained (CG) model has been a powerful tool in bridging the gap between theoretical studies and experimental phenomena in biological computing field. The reconstruction from a CG model to an atomic-detail structure is especially important in CG studies of biological systems. In this work, a rigid-fragment- and local-frame-based (RF-LF) backmapping method was proposed to achieve reverse mapping from CG models to atomic-level structures. The initial atomic-level structures were further refined to yield the final backmapping ones. With the popular Martini force field, the performance of the RF-LF method was extensively examined in the CG → AA (CG to AA) backmapping of protein/DNA/RNA systems. Besides, the RF-LF method was also extended to the backmapping of the TMFF model. Numerical results illustrate that the RF-LF backmapping method is generic and parameter-free and can provide a promising way to tackle atomic-level studies in CG models.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Proteins/chemistry , RNA/chemistry
14.
Sci Bull (Beijing) ; 65(6): 443-451, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-36747433

ABSTRACT

Dual-functional NiCo2S4 polyhedral architectures with outstanding electrochemical performance for supercapacitors and lithium-ion batteries (LIBs) have been rationally designed and successfully synthesized by a hydrothermal method. The as-synthesized NiCo2S4 electrode for supercapacitor exhibits an outstanding specific capacitance of 1298Fg-1 at 1Ag-1 and an excellent rate capability of ~80.4% at 20Ag-1. Besides, capacitance retention of 90.44% is realized after 8000 cycles. In addition, the NiCo2S4 as anode in LIBs delivers high initial charge/discharge capacities of 807.6 and 972.8mAhg-1 at 0.5C as well as good rate capability. In view of these points, this work provides a feasible pathway for assembling electrodes and devices with excellent electrochemical properties in the next generation energy storage applications.

15.
Nanoscale ; 11(2): 688-697, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30565623

ABSTRACT

Uniform P doped Co-Ni-S nanosheet arrays were directly grown on Ni foams by an efficient and cost-effective process. The binder-free electrode of P doped Co-Ni-S nanosheet arrays possesses an ultra-high specific capacitance of ∼3677 F g-1 at 1 A g-1 with an excellent rate capability (∼63% capacitance retention at 20 A g-1) and considerable cycling performance (∼84% capacitance retention after 10 000 cycles). Correspondingly, the asymmetric supercapacitors assembled with P doped Co-Ni-S as the positive electrode and AC as the negative electrode display an ultra-high energy density of ∼68.7 W h kg-1 at a power density of ∼0.8 kW kg-1. In view of these features, this work provides a simple and scalable strategy for designing electrodes and devices with superior electrochemical performance in next generation energy storage applications.

16.
Opt Express ; 26(20): 26179-26187, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30469708

ABSTRACT

The laser properties of Nd:YPO4 crystal were demonstrated for the first time. For a 1.2 at.% doped Nd:YPO4 crystal, the absorption cross-section at 803 nm, stimulated emission cross-section at 1063 nm, and fluorescence lifetime was measured to be 8.1 × 10-20 cm2, 1.6 × 10-19 cm2, 156 µs, respectively. With an as-grown 0.6 mm thin slice which was unpolished and uncoated, efficient diode-pumped continue-wave (CW) laser operations were realized at 1.06 and 1.3 µm wavebands. The 1063 nm output power reached 2.16 W when the absorbed pump power was 4.07 W, corresponding to an optical-to-optical efficiency of 53%, and a slope efficiency of 56.4%. The 1.3 µm laser output exhibited the simultaneous operations of dual-wavelengths, i.e. 1338 and 1347 nm. The maximum output power was 800 mW at an absorbed pump power of 3.08 W, giving an optical-to-optical efficiency of 26% and a slope efficiency of 28.2%.

17.
Opt Lett ; 43(15): 3666-3669, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067650

ABSTRACT

We report on a miniature Yb:LuPO4 crystal laser at 1.01 µm that is passively Q-switched with a sapphire-based few-layer WS2 saturable absorber, and that can be operated under very high output couplings (≥80%). With 12.6 W of pump power absorbed, an average output power of 4.35 W is generated at a repetition rate of 1.33 MHz with a slope efficiency of 47%. The maximum pulse energy and highest peak power achieved are 3.41 µJ and 110 W, respectively; while the shortest pulse duration obtained is 28.6 ns. To the best of our knowledge, these results represent the highest output power and shortest pulse duration ever achieved in the 1 µm region from solid-state lasers passively Q-switched by using two-dimensional saturable absorbers.

18.
Opt Express ; 26(11): 14232-14240, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29877463

ABSTRACT

We demonstrate a Yb:LuPO4 miniature crystal laser that is formed with a 5 mm long plane-parallel resonator, and is passively Q-switched by a few-layer MoS2 saturable absorber. With 6.53 W of pump power absorbed, an average output power of 2.06 W at 1020.8 nm is generated at a pulse repetition rate of 429 kHz with a slope efficiency of 50%; the resulting pulse energy, duration, and peak power are respectively 4.8 µJ, 83 ns, and 57.8 W. While operating at 1010.5 nm, the laser is capable of producing an average output power of 1.53 W at a repetition rate of 870 kHz, with pulse duration being shortened to 61 ns. These results represent a significant progress in the development of Yb- or Nd-ion lasers passively Q-switched by two-dimensional MoS2.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 274-282, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-28946077

ABSTRACT

The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz.

20.
Inorg Chem ; 56(21): 13078-13085, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29068201

ABSTRACT

Hybrid organic-inorganic perovskite materials have demonstrated great potential in the field of photovoltaics and photoelectronics. On the basis of the high degree of structural flexibility and compatibility, diverse molecular functional materials have been assembled by modifying the length of the organic components and/or dimensionality of the inorganic frameworks. In this paper, we present a chiral lead-free organic-inorganic hybrid, (piperidinium)2SbCl5 (1), which follows the one-dimensional inorganic frameworks of the corner-sharing SbCl6 octahedra. Strikingly, 1 displays a dielectric phase transition at Tc = 338 K, changing from the chiral space group of P212121 to polar Pna21 upon heating. Crystal structure analyses reveal that an unusual thermally activated conformation change of the piperidinium cations affords the driving force to the phase transition of 1. That is, organic piperidinium moieties display a chairlike conformation below Tc, which transforms to a boatlike structure above Tc. Such an unprecedented change is strongly coupled to the dielectric transition along with notable steplike anomalies, which suggest that 1 could be used as a potential switchable dielectric material. Besides, the temperature-dependent conductivity and theoretical analysis of its electronic structure disclose the semiconducting behavior of 1. This study paves the pathway to the design of new lead-free semiconducting perovskites with targeted properties for optoelectronic application.

SELECTION OF CITATIONS
SEARCH DETAIL
...