Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 11(10)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627452

ABSTRACT

In this article, the intumescent flame-retardant microsphere (KC-IFR) was prepared by inverse emulsion polymerizations, with the use of k-carrageenan (KC) as carbon source, ammonium polyphosphate (APP) as acid source, and melamine (MEL) as gas source. Meanwhile, benzoic acid functionalized graphene (BFG) was synthetized as a synergist. A "four-source flame-retardant system" (KC-IFR/BFG) was constructed with KC-IFR and BFG. KC-IFR/BFG was blended with waterborne epoxy resin (EP) to prepare flame-retardant coatings. The effects of different ratios of KC-IFR and BFG on the flame-retardant properties of EP were investigated. The results showed that the limiting oxygen index (LOI) values increased from 19.7% for the waterborne epoxy resin to 28.7% for the EP1 with 20 wt% KC-IFR. The addition of BFG further improved the LOI values of the composites. The LOI value reached 29.8% for the EP5 sample with 18 wt% KC-IFR and 2 wt% BFG and meanwhile, UL-94 test reached the V-0 level. In addition, the peak heat release (pHRR) and smoke release rate (SPR) of EP5 decreased by 63.5% and 65.4% comparing with EP0, respectively. This indicated the good flame-retardant and smoke suppression property of EP composites coating.

2.
Polymers (Basel) ; 11(10)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615046

ABSTRACT

A k-carrageenan-iron complex (KC-Fe) was synthesized by complexation between degraded KC and FeCl3. Furthermore, KC-Fe and ammonium polyphosphate (APP) were simultaneously added into waterborne epoxy (EP) to improve its flame retardancy and smoke suppression performance. The structure and properties of KC-Fe were assessed using Fourier transform infrared spectroscopy (FTIR), ultraviolet (UV) spectroscopy, thermo gravimetric analysis (TGA), and X-ray powder diffraction analysis (XRD). The analysis showed that KC-Fe was successfully synthesized and exhibited good thermal properties with a 49% char residue at 800 °C. The enhanced flame retardancy and smoke suppression performance of waterborne epoxy were evaluated using a limiting oxygen index (LOI) and UL-94. Moreover, the flame retardancy of waterborne epoxy coated on a steel plate was also investigated using cone calorimetry. The results showed that the flame-retardant waterborne epoxy blend exhibited the best flame retardancy when the mass ratio of APP and KC-Fe was 2:1. The total heat release (THR) and total smoke production (TSP) was decreased by 44% and 45%, respectively, which indicated good fire safety performance and smoke suppression properties. Analysis of the residual char using FTIR, SEM, and elemental analysis (EDS) indicated that the action of KC-Fe was promoted by the presence of APP. The formation of a dense thermal stable char layer from an intumescent coating was essential to protect the underlying materials.

3.
Polymers (Basel) ; 10(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30961193

ABSTRACT

In this paper, phosphated K-carrageenan (P-KC) was obtained by reacting POCl3 with the renewable source K-carrageenan (KC). P-KC and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were added into waterborne epoxy (EP) to improve its flame retardancy. The structure of P-KC was studied comprehensively using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), showing the successful synthesis of P-KC. The flame retardancy of the EP was evaluated by the cone calorimeter test. The results showed that different mass ratios of DOPO and P-KC affected the flame retardancy of EP. When the mass ratio of DOPO and P-KC was 2:1, total heat release (THR) and total smoke production (TSP) decreased by 48.7% and 37.4%, respectively. The microstructures of residue char were observed by FTIR and scanning electron microscopy (SEM), indicating that the flame-retardant waterborne epoxy (FR-EP) system held a more cohesive and denser char structure. The char inhibited the diffusion of heat and oxygen, which played a key role in the flame retardancy.

SELECTION OF CITATIONS
SEARCH DETAIL
...