Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3856, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386020

ABSTRACT

The Asian monsoon provides the freshwater that a large population in Asia depends on, but how anthropogenic climate warming may alter this key water source remains unclear. This is partly due to the prevailing point-wise assessment of climate projections, even though climate change patterns are inherently organized by dynamics intrinsic to the climate system. Here, we assess the future changes in the East Asian summer monsoon precipitation by projecting the precipitation from several large ensemble simulations and CMIP6 simulations onto the two leading dynamical modes of internal variability. The result shows a remarkable agreement among the ensembles on the increasing trends and the increasing daily variability in both dynamical modes, with the projection pattern emerging as early as the late 2030 s. The increase of the daily variability of the modes heralds more monsoon-related hydrological extremes over some identifiable East Asian regions in the coming decades.


Subject(s)
Climate Change , Computer Simulation , Cyclonic Storms , Rain , Asia , Asia, Eastern , Computer Simulation/trends
2.
Sci Rep ; 12(1): 17380, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253425

ABSTRACT

Extraordinary heat extremes occurred in the 1930s in areas of the Northern Hemisphere far from the record setting heat over the US associated with the Great Plains Dust Bowl drought. A climate model sensitivity experiment is used to identify a new mechanism involving a warm season circumglobal atmospheric teleconnection pattern that spread heat extremes over far-flung areas of the Northern Hemisphere arising from the intense heating over the desiccated Great Plains themselves. It has only been in the twenty-first century that human populations in these regions of the Northern Hemisphere have experienced heat extremes comparable to the 1930s. This demonstrates that humans influenced Northern Hemisphere temperature and heat extremes through disastrous and unprecedented regional land use practices over the Great Plains, and points to the possibility that future intense regional droughts could affect heat extremes on hemispheric scales.


Subject(s)
Droughts , Hot Temperature , Climate Change , Dust , Humans , Seasons , Temperature
3.
Nat Commun ; 13(1): 1288, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35277484

ABSTRACT

Consensus on the cause of recent midlatitude circulation changes toward a wavier manner in the Northern Hemisphere has not been reached, albeit a number of studies collectively suggest that this phenomenon is driven by global warming and associated Arctic amplification. Here, through a fingerprint analysis of various global simulations and a tropical heating-imposed experiment, we suggest that the suppression of tropical convection along the Inter Tropical Convergence Zone induced by sea surface temperature (SST) cooling trends over the tropical Eastern Pacific contributed to the increased summertime midlatitude waviness in the past 40 years through the generation of a Rossby-wave-train propagating within the jet waveguide and the reduced north-south temperature gradient. This perspective indicates less of an influence from the Arctic amplification on the observed mid-latitude wave amplification than what was previously estimated. This study also emphasizes the need to better predict the tropical Pacific SST variability in order to project the summer jet waviness and consequent weather extremes.

4.
Mol Plant ; 12(2): 199-214, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30639120

ABSTRACT

Over the past few years, three photorespiratory bypasses have been introduced into plants, two of which led to observable increases in photosynthesis and biomass yield. However, most of the experiments were carried out using Arabidopsis under controlled environmental conditions, and the increases were only observed under low-light and short-day conditions. In this study, we designed a new photorespiratory bypass (called GOC bypass), characterized by no reducing equivalents being produced during a complete oxidation of glycolate into CO2 catalyzed by three rice-self-originating enzymes, i.e., glycolate oxidase, oxalate oxidase, and catalase. We successfully established this bypass in rice chloroplasts using a multi-gene assembly and transformation system. Transgenic rice plants carrying GOC bypass (GOC plants) showed significant increases in photosynthesis efficiency, biomass yield, and nitrogen content, as well as several other CO2-enriched phenotypes under both greenhouse and field conditions. Grain yield of GOC plants varied depending on seeding season and was increased significantly in the spring. We further demonstrated that GOC plants had significant advantages under high-light conditions and that the improvements in GOC plants resulted primarily from a photosynthetic CO2-concentrating effect rather than from improved energy balance. Taken together, our results reveal that engineering a newly designed chloroplastic photorespiratory bypass could increase photosynthetic efficiency and yield of rice plants grown in field conditions, particularly under high light.


Subject(s)
Chloroplasts/metabolism , Chloroplasts/radiation effects , Genetic Engineering , Light , Oryza/cytology , Oryza/genetics , Photosynthesis/genetics , Carbon Dioxide/metabolism , Cell Respiration/genetics , Cell Respiration/radiation effects , Energy Metabolism/genetics , Energy Metabolism/radiation effects , Oryza/metabolism , Oryza/radiation effects , Phenotype , Photosynthesis/radiation effects , Plants, Genetically Modified
5.
Sensors (Basel) ; 17(4)2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28387704

ABSTRACT

An enzymatic method for quantitative detection of the reduced form of nicotinamide-adenine dinucleotide (NADH) using surface-enhanced Raman scattering was developed. Under the action of NADH oxidase and horseradish peroxidase, NADH can generate hydrogen peroxide (H2O2) in a 1:1 molar ratio, and the H2O2 can oxidize a chromogen into pigment with a 1:1 molar ratio. Therefore, the concentration of NADH can be determined by detecting the generated pigment. In our experiments, eight chromogens were studied, and o-tolidine (OT) was selected because of the unique Raman peaks displayed by its corresponding pigment. The optimal OT concentration was 2 × 10-3 M, and this gave the best linear relationship and the widest linear range between the logarithmic H2O2 concentration and the logarithmic integrated SERS intensity of the peak centered at 1448 cm-1. Under this condition, the limit of detection for NADH was as low as 4 × 10-7 M. Two NADH samples with concentrations of 2 × 10-4 and 2 × 10-5 M were used to validate the linear relationship, and the logarithmic deviations were less than 3%.

6.
Nat Commun ; 7: 11718, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251760

ABSTRACT

The negative phase of the Interdecadal Pacific Oscillation (IPO), a dominant mode of multi-decadal variability of sea surface temperatures (SSTs) in the Pacific, contributed to the reduced rate of global surface temperature warming in the early 2000s. A proposed mechanism for IPO multidecadal variability indicates that the presence of decadal timescale upper ocean heat content in the off-equatorial western tropical Pacific can provide conditions for an interannual El Niño/Southern Oscillation event to trigger a transition of tropical Pacific SSTs to the opposite IPO phase. Here we show that a decadal prediction initialized in 2013 simulates predicted Niño3.4 SSTs that have qualitatively tracked the observations through 2015. The year three to seven average prediction (2015-2019) from the 2013 initial state shows a transition to the positive phase of the IPO from the previous negative phase and a resumption of larger rates of global warming over the 2013-2022 period consistent with a positive IPO phase.

7.
Science ; 307(5716): 1769-72, 2005 Mar 18.
Article in English | MEDLINE | ID: mdl-15774757

ABSTRACT

Two global coupled climate models show that even if the concentrations of greenhouse gases in the atmosphere had been stabilized in the year 2000, we are already committed to further global warming of about another half degree and an additional 320% sea level rise caused by thermal expansion by the end of the 21st century. Projected weakening of the meridional overturning circulation in the North Atlantic Ocean does not lead to a net cooling in Europe. At any given point in time, even if concentrations are stabilized, there is a commitment to future climate changes that will be greater than those we have already observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...