Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; : 134507, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111502

ABSTRACT

Alkali-induced preserved egg gel formation is a dynamic process that involves complex protein changes. Ovomucin (OVM) is closely associated with the gel properties of egg white. In this study, the effect of OVM in alkali-induced egg white gel (AEWG) formation was investigated. The results suggested that OVM reduced the gel formation time by 15 %. The mechanical properties of the fully formed gel were also improved by OVM. Specifically, OVM increased the storage modulus (G') of the gel by 1.5-fold, while the hardness significantly increased from 78.90 ±â€¯4.24 g to 99.80 ±â€¯9.23 g. Low-field nuclear magnetic resonance (LF-NMR) demonstrated that OVM significantly shortened T23 relaxation time and reduced the water mobility, thus increasing the water holding capacity (WHC). Meanwhile, the presence of OVM resulted in a more homogeneous and denser microscopic morphology of the gel. Selective solubility experiments revealed that disulfide bonds are the primary force in gel formation. OVM promoted the formation of more disulfide bonds, which increased the strength and stability of the gel network. Overall, this research proved OVM plays a critical role in the performance improvement of AEWG, which provides a new insight into the quality control of preserved egg and protein gel foods.

2.
J Funct Biomater ; 15(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38667568

ABSTRACT

As an essential nutrient, lutein (LUT) has the ability to aid in the prevention of eye diseases, cardiovascular diseases, and cancer. However, the application of LUT is largely restricted by its poor solubility and susceptibility to oxidative degradation. Thus, in this study, LUT-loaded nanogel (OVM-COS-LUT) was prepared by a self-assembly of ovomucin (OVM) and chitosan oligosaccharide (COS) to enhance the effective protection and bioavailability of LUT. The nanogel had excellent dispersion (PDI = 0.25) and an 89.96% LUT encapsulation rate. XRD crystal structure analysis confirmed that the encapsulated LUT maintained an amorphous morphology. In addition, the nanogel showed satisfactory stability with pH levels ranging from 2 to 9 and high ionic strengths (>100 mM). Even under long-term storage, the nanogel maintained an optimistic stabilization and protection capacity; its effective retention rates could reach 96.54%. In vitro, digestion simulation showed that the bioaccessibility and sustained release of OVM-COS-LUT nanogel was superior to that of free LUT. The nanogel provided significant antioxidant activity, and no significant harmful effects were detected in cytotoxicity analyses at higher concentrations. In summary, OVM-COS-LUT can be utilized as a potential safe oral and functional carrier for encapsulating LUT.

SELECTION OF CITATIONS
SEARCH DETAIL
...